Auf dem Weg zu künstlichem Gewebe?

Für moderne Implantate und die Zucht künstlicher Gewebe und Organe werden Materialien mit möglichst naturnahen Eigenschaften benötigt. Das Gewebe unseres Körpers zeigt jedoch eine Eigenschaftskombination, die nur sehr schwer in synthetischen Materialien nachgeahmt werden kann: Es ist gleichzeitig weich und sehr belastbar.

Ein australisch-koreanisches Forscherteam um Geoffrey M. Spinks und Seon Jeong Kim hat nun ein neuartiges, hochporöses schwammartiges Material entwickelt, das in seinen mechanischen Eigenschaften dem von biologischem Weichteilgewebe sehr nahe kommt. Wie die Wissenschaftler in der Zeitschrift Angewandte Chemie berichten, besteht es aus einem robusten Netzwerk aus DNA-Strängen und Kohlenstoffnanoröhrchen.

Weichteilgewebe wie Sehnen, Muskeln, Arterien, Haut und andere Organe erhalten ihre mechanische Stütze durch die extrazelluläre Matrix, einem Netz proteinbasierter Nanofasern. Verschiedene Protein-Morphologien führen dabei zu Geweben mit einer ganzen Bandbreite von Steifigkeiten. Als Implantate oder als Gerüste für die Gewebezüchtung braucht man poröse, weiche Materialien – die meist aber sehr fragil sind. Da viele biologische Gewebe regelmäßig starken mechanischen Belastungen ausgesetzt sind, ist es zudem wichtig, dass das Implantatmaterial eine vergleichbare Elastizität ausweist, um Entzündungen zu vermeiden. Gleichzeitig muss das Material sehr fest und belastbar sein, sonst kann es versagen.

Das neue Konzept nutzt DNA-Stränge als Matrix, die die gerüstbildenden Kohlenstoffnanoröhrchen in Anwesenheit einer ionischen Flüssigkeit regelrecht einwickeln und zu einem Gel vernetzen. Dieses Gel kann man spinnen: Nicht anders als beim Nassspinnen von Seide oder Kunstfasern für Textilien lassen sich hauchfeine Fäden erzeugen, wenn man das Gel in ein spezielles Bad eindüst. Die getrockneten Fäden haben eine poröse schwammartige Struktur und bestehen aus einem Netzwerk ineinander verschränkter ca. 50 nm dünner Nanofasern. Einweichen in einer Calciumchloridlösung vernetzt die DNA weiter, die Fäden werden wesentlich dichter und fester miteinander verbunden.

Diese schwammartigen Fasern ähneln den Kollagenfasernetzen der biologischen extrazellulären Matrix. Sie lassen sich zudem knoten, flechten und zu textilartigen Strukturen verweben. So entstehen Materialien, die so elastisch sind wie die weichsten natürlichen Gewebe, gleichzeitig verleihen ihnen die robusten DNA-Kontaktstellen eine hohe Belastbarkeit.

Ein weiterer Vorteil ist die elektrische Leitfähigkeit des neuen Materials, das sich damit auch als Elektrodenmaterial für mechanische Stellglieder, Energiespeicher und Sensoren eignet. So gelang es den Forschern etwa, einen Wasserstoffperoxid-Sensor herzustellen. Die Kohlenstoffnanoröhrchen katalysieren die Oxidation von Wasserstoffperoxid, dabei entsteht ein messbarer Stromfluss. Wasserstoffperoxid spielt eine Rolle in der normalen Herzfunktion und bei bestimmten Herzerkrankungen. Ein robuster Sensor mit der Dehnbarkeit des Herzmuskels wäre eine große Hilfe für die Erforschung dieser Zusammenhänge.

Angewandte Chemie: Presseinfo 19/2009

Autor: Geoffrey M. Spinks, University of Wollongong (Australia), http://www.uow.edu.au/science/research/ipri/people/UOW001340.html

Angewandte Chemie, doi: 10.1002/ange.200804788

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Media Contact

Geoffrey M. Spinks GDCh

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neuartiges Material für nachhaltiges Bauen

Innovativer Werkstoff für eine energieeffiziente Architektur: Forschende des Karlsruher Instituts für Technologie (KIT) stellen in der aktuellen Ausgabe der Fachzeitschrift Nature Communications ein polymerbasiertes Material mit besonderen Eigenschaften vor. Das…

Neues Antibiotikum gegen Erreger der Flussblindheit und Lymphatischen Filariose

Prof. Achim Hoerauf, Direktor des Instituts für Medizinische Mikrobiologie, Immunologie und Parasitologie des Universitätsklinikums Bonn (UKB), und seinem Team ist es in Kollaboration mit der Abteilung Pharmazeutische Technologie und Biopharmazie…

Evolutionäre Genomik: Folgen biodiverser Fortpflanzungssysteme

Die Deutsche Forschungsgemeinschaft (DFG) fördert die Einrichtung eines neuen Graduiertenkollegs (GRK) in der Biologie an der Universität Göttingen. Das GRK mit dem Titel „Evolutionary Genomics: Consequences of Biodiverse Reproductive Systems…

Partner & Förderer