Was haben Neuronen, Glühwürmchen und Line Dance gemeinsam?

Verschiedene Interaktionsmuster bewirken unterschiedliche Synchronisierungsvorgänge.
(c) Associate Professor Joseph Lizier

Prozesse der Synchronisierung umgeben uns alltäglich, jedoch sind deren zugrunde liegende Mechanismen bis dato nicht ausreichend entschlüsselt. Forschende haben nun neue Instrumente entwickelt, um zu begreifen, wie sich menschliche und natürliche Netzwerke synchronisieren oder entkoppeln.

In ihrer Forschung an komplexen Systemen gelang es einem Team von Informatikern und Mathematikern der University of Sydney und des Max-Planck-Instituts für Mathematik in den Naturwissenschaften eine Methode zu entwickeln, die beschreibt, was für viele von uns selbstverständlich ist – wie leicht oder schwer es sein kann, aus dem Takt zu geraten.
Das Phänomen der Synchronisierung begegnet uns in unserem Alltag ständig und überall. Es verbirgt sich beispielsweise im Klatschen und Tanzen, im Blinken von Glühwürmchen und im Zusammenspiel unserer Neuronen und Herzzellen. Jedoch gelang es Wissenschaftlern bis dato nicht, diese Vorgänge vollständig zu verstehen.

Associate Professor Joseph Lizier, Experte für komplexe Systeme an der Universität Sydney, sagt: “Wir alle kennen das Gefühl, in einer Menschenmenge im Rhythmus zu tanzen – oder auch das unangenehme Gefühl, wenn Menschen beim Klatschen zur Musik aus dem Takt geraten. In der Natur laufen ähnliche Prozesse ab, und es ist wichtig, dass wir besser verstehen, wie es funktioniert, in und aus dem Takt zu kommen. Prozesse der Synchronisierung können sowohl positive als auch negative Auswirkungen haben. „Ein Beispiel für einen positiven Aspekt der Synchronisierung eines Systems ist unser Herzschlag, bei dem alle Zellen unseres Herzens in einem gemeinsamen Takt schlagen anstatt zu flimmern. Andererseits kann Synchronität kann aber auch sehr schlecht sein: Bei einem epileptischen Anfall sollten die Gehirnzellen besser nicht alle gleichzeitig feuern“, so Lizier.

Associate Professor Joseph Lizier und Kollegen vom Max-Planck-Institut in Leipzig haben in den Proceedings of the National Academy of Sciences of the United States of America (PNAS) neue Forschungsergebnisse zur Synchronisation veröffentlicht. Die Forscher liefern eine mathematische Erklärung, wie die Netzwerkstruktur selbst, die die Verknüpfung einer Reihe einzelner Elemente darstellt, synchronisierende Aktivitäten ihrer individuellen Elemente steuern kann. Dies ist ein wichtiger Einblick in die Funktionsweise dieser Systeme, da in den meisten realen Systemen kein individuelles Element alle anderen kontrollieren kann. Ebenso wenig hat ein einzelnes Element direkten Einblick in alle anderen und kann auf sie reagieren: Sie stehen nur über ein Netzwerk miteinander in Verbindung.

Joseph Lizier sagt dazu: “Unsere Ergebnisse eröffnen neue Möglichkeiten für das Design von Netzwerkstrukturen oder für das Eingreifen in Netzwerke – zum Beispiel, wenn es darum geht, Stromnetze für die Energiewende zu stabilisieren oder die Synchronisation bestimmter Nervenzellen im Gehirn zu unterbinden, die zu Epilepsie führen kann”. Um zu verstehen, wie diese Systeme funktionieren, untersuchten die Wissenschaftler sogenannte “Wanderungen” durch ein komplexes Netzwerk. Dabei handelt es sich um eine Folge von aufeinanderfolgenden Sprüngen zwischen den einzelnen Elementen oder Knoten des Netzwerks. Lizier erklärt: “Unsere Mathematik untersucht paarweise Wanderungen: Sie beginnen an einem Knoten und gehen zwei Pfade mit zufälligen Sprüngen zwischen den Knoten für eine bestimmte Anzahl von Schritten. Die beiden Pfade können am selben Knoten enden (konvergente Pfade) oder an verschiedenen Knoten (divergente Pfade). “Unsere wichtigste Erkenntnis ist, dass die Synchronisierung in einem Netzwerk umso schlechter ist, je mehr konvergente Pfade es aufweist”. Für das Gehirn, wo Synchronisation unerwünscht ist, weil sie Epilepsie verursachen kann, ist dies eine gute Nachricht. Die modulare Struktur des Gehirns bedeutet, dass es einen hohen Anteil an konvergenten Prozessen hat, die es auf natürliche Weise vor der Entstehung von Anfällen schützen.

“Wir können sogar eine Analogie zu sozialen Medien mit ihrem Echokammer-Phänomen herstellen”, sagt Mitautor Professor Jürgen Jost, dessen Forschungsgruppe sich außerdem mit der Dynamik sozialer Netzwerke beschäftigt. “Hier sehen wir Subgruppen, die ihre eigenen Botschaften durch konvergente Verbreitung innerhalb ihrer eigenen Gruppe verstärken, aber nicht unbedingt mit der breiteren Bevölkerung in Einklang bringen.” so der Direktor des Max-Planck-Instituts für Mathematik in den Naturwissenschaften in Leipzig.

Die im Artikel präsentierten wissenschaftlichen Ergebnisse bedeuten einen großen Durchbruch in der theoretischen Auseinandersetzung mit der Frage, wie die Struktur komplexer Netzwerke ihre Dynamik beeinflusst oder ganz konkret wie unsere Hirnstruktur die Kognition bestimmt.

Wissenschaftliche Ansprechpartner:

Associated Professor Joseph T. Lizier joseph.lizier@sydney.edu.au
https://www.sydney.edu.au/engineering/about/our-people/academic-staff/joseph-liz…

Originalpublikation:

Joseph T. Lizier, Frank Bauer, Fatihcan M. Atay und Jürgen Jost
“Analytic relationship of relative synchronizability to network
structure and motifs”
Proceedings of the National Academy of Sciences (PNAS)
https://doi.org/10.1073/pnas.2303332120

http://www.mis.mpg.de

 

Media Contact

Jana Gregor Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Wie Zellen ihre zentrale Verarbeitungseinheit für die Zellteilung aufrechterhalten

Dortmunder Max-Planck-Forschende haben die Rolle des Enzyms PLK1 bei der Regulierung der Wiederherstellung von Zentromeren nach der Zellteilung aufgedeckt. Das Zentromer ist die Schaltzentrale der Zellteilung. Dieser spezialisierte Ort in…

Die Geheimnisse der visuellen Navigation

„Nature“-Studie von Forschenden der Freien Universität Berlin und der University of California Santa Barbara zeigt richtungsweisende Erkenntnisse zur visuellen Navigation im Gehirn der Taufliege Drosophila melanogaster. Ein internationales Forschungsteam der…

Komet C/2023 A3 (Tsuchinshan-ATLAS) am Abendhimmel

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde (VdS) und des Hauses der Astronomie in Heidelberg (HdA) – Ab dem 11. Oktober 2024 kann der Komet C/2023 A3 (Tsuchinshan-ATLAS) mit bloßem Auge…

Partner & Förderer