Was Blutgefäße wachsen lässt

Wachsendes Blutgefäßnetzwerk in der Netzhaut der Maus: Zellen der Gefäßinnenwand – die Endothelzellen (türkis/weiß) – wandern in das umgebende Gewebe ein, um dort neue Verbindungen zu bilden.
(c) Michael Potente, MDC

Blutgefäße müssen ihr Wachstum an das in ihrer Umgebung vorhandene Nährstoffangebot anpassen, um Organe bedarfsgerecht zu versorgen. Ein Team um Michael Potente hat in „Nature Metabolism“ zwei Proteine beschrieben, die eine wichtige Rolle in diesem Prozess spielen.

Blutgefäße durchziehen den gesamten menschlichen Körper. Sie stellen sicher, dass Organen ausreichend Nährstoffe und Sauerstoff zur Verfügung stehen. Funktionieren diese feinmaschigen Netzwerke nicht mehr so, wie sie sollen, drohen Krankheiten. Während sie zum Beispiel bei altersabhängigen Herz-Kreislauf-Leiden häufig verkümmern, sind bösartige Tumore durch ein überschießendes Wachstum fehlgeleiteter Gefäße gekennzeichnet. Auch bei der feuchten Makuladegeneration des Auges sprießen neue Blutgefäße – allerdings nicht dort, wo sie es sollen. Dies kann im schlimmsten Fall zu Blindheit führen.

Zwei Türöffner für Nährstoffe

„Um für solche Erkrankungen maßgeschneiderte Therapien entwickeln zu können, wollen wir herausfinden, wie genau das Wachstum neuer Blutgefäße, die Angiogenese, im Körper gesteuert wird“, sagt Michael Potente, Professor für Translationale Vaskuläre Biomedizin am Berlin Institute of Health in der Charité (BIH) und Gastforscher am Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC). Sein Labor für Angiogenese & Metabolismus gehört zum „Berlin Center for Translational Vascular Biomedicine“. Das interdisziplinäre Zentrum ist ein gemeinsamer Schwerpunkt von BIH, Charité – Universitätsmedizin Berlin und MDC.

Gemeinsam mit einem internationalen Team hat Potente jetzt einen wichtigen Schritt getan: Wie die Forschenden in der Fachzeitschrift „Nature Metabolism“ berichten, sind zwei Proteine namens YAP und TAZ entscheidend dafür, dass auch unter schwierigen Stoffwechselbedingungen Gefäße aussprießen können. Die Proteine gehören zum Hippo-Signalweg, der in fast allen Lebewesen das Wachstum und die Größe von Organen bestimmt. „Sind die beiden Moleküle in den Zellen der Gefäßinnenwand – dem Endothel – aktiv, so werden Gene abgelesen, die zur vermehrten Bildung bestimmter Oberflächentransporter führen“, erläutert Potente. „Diese ermöglichen es den Gefäßzellen, vermehrt Nährstoffe aufzunehmen, die für Wachstum und Zellteilung erforderlich sind.“ Die in ihrer Funktionsweise ähnlichen Proteine YAP und TAZ fungieren damit als eine Art Türöffner.

„Die gesteigerte Nährstoffaufnahme wiederum ermöglicht die Aktivierung eines weiteren Proteins, das mTOR genannt wird“, sagt Potente. mTOR ist eine zentrale Schaltstelle in Zellen, die Wachstum und Zellteilung in Gang setzt. „Auf diese Weise können neue Gefäßnetzwerke expandieren“, erklärt der Forscher. Welche Signale die Aktivität von YAP und TAZ in Endothelzellen bestimmen, wissen er und sein Team bislang allerdings noch nicht.

Einsichten aus der Netzhaut

Erstautorin der Studie ist Dr. Yu Ting Ong vom Max-Planck-Institut für Herz- und Lungenforschung im hessischen Bad Nauheim, an dem Potente bis zu seinem Wechsel nach Berlin eine Arbeitsgruppe geleitet hat. Auch Professor Holger Gerhardt, Leiter der MDC-Arbeitsgruppe „Integrative Vaskuläre Biologie“ und Potentes Nachbar im Käthe-Beutler-Haus in Berlin-Buch, war an der Publikation beteiligt. „Wir haben gemeinsam einen wichtigen Mechanismus entschlüsselt, der es Blutgefäßen ermöglicht, ihr Wachstumsverhalten eng an die Umgebungsbedingungen anzupassen“, sagt Gerhardt. „Er verhindert, dass Endothelzellen sich teilen, wenn die dafür notwendigen Stoffwechselressourcen nicht vorhanden sind.“

Die Ergebnisse basieren auf Experimenten an Mäusen. Deren Netzhaut ist ein ideales Modell, um die Entwicklung von Blutgefäßen zu untersuchen. „Mithilfe genetisch veränderter Mauslinien konnten wir zeigen, dass Endothelzellen, in denen die Proteine YAP und TAZ nicht hergestellt werden, sich kaum teilen“, berichtet Potente. „Dies führte bei den Tieren zu einer Hemmung des Gefäßwachstum.“ Das Protein TAZ spielt bei dem Prozess eine besonders wichtige Rolle – anders als bei den meisten Zelltypen, in denen YAP entscheidend ist.

Eine bedeutsame molekulare Maschinerie

„Da neue Blutgefäße häufig in mangeldurchbluteten Geweben entstehen, müssen Endothelzellen in der Lage sein, unter schwierigsten Stoffwechselbedingungen zu wachsen“, sagt Potente. „Daher ist es für diese Zellen von besonderer Bedeutung, eine molekulare Maschinerie zu besitzen, die subtile Veränderungen im extrazellulären Milieu wahrnimmt und auf diese reagiert.“

Gemeinsam mit ihren Teams wollen Potente und Gerhardt nun untersuchen, inwieweit der von ihnen während der Gewebeentwicklung beschriebene Mechanismus auch in Regenerations- und Reparaturprozesse involviert ist, bei denen Blutgefäße eine essentielle Rolle spielen. „In erster Linie sind wir daran interessiert, herauszufinden, ob und – wenn ja – auf welche Weise Störungen des beschriebenen Signalwegs beim Menschen Gefäßkrankheiten bedingen“, sagt Potente.

Kontakte

Stefanie Seltmann
Leiterin, Stabsstelle Kommunikation
Berlin Institute of Health at Charité (BIH)
+49 30 450 543 019
stefanie.seltmann@bih-charite.de

Jana Schlütter
Redakteurin, Abteilung Kommunikation
Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC)
+49 30 9406-2121
jana.schluetter@mdc-berlin.de oder presse@mdc-berlin.de

Max-Delbrück-Centrum für Molekulare Medizin (MDC)

Das Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft gehört zu den international führenden biomedizinischen Forschungszentren. Nobelpreisträger Max Delbrück, geboren in Berlin, war ein Begründer der Molekularbiologie. An den MDC-Standorten in Berlin-Buch und Mitte analysieren Forscher*innen aus rund 60 Ländern das System Mensch – die Grundlagen des Lebens von seinen kleinsten Bausteinen bis zu organübergreifenden Mechanismen. Wenn man versteht, was das dynamische Gleichgewicht in der Zelle, einem Organ oder im ganzen Körper steuert oder stört, kann man Krankheiten vorbeugen, sie früh diagnostizieren und mit passgenauen Therapien stoppen. Die Erkenntnisse der Grundlagenforschung sollen rasch Patient*innen zugutekommen. Das MDC fördert daher Ausgründungen und kooperiert in Netzwerken. Besonders eng sind die Partnerschaften mit der Charité – Universitätsmedizin Berlin im gemeinsamen Experimental and Clinical Research Center (ECRC) und dem Berlin Institute of Health (BIH) in der Charité sowie dem Deutschen Zentrum für Herz-Kreislauf-Forschung (DZHK). Am MDC arbeiten 1600 Menschen. Finanziert wird das 1992 gegründete MDC zu 90 Prozent vom Bund und zu 10 Prozent vom Land Berlin.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Michael Potente
Berlin Institute of Health
Berlin Center for Translational Vascular Biomedicine
Michael.Potente@mdc-berlin.de oder michael.potente@bih-charite.de

Originalpublikation:

Jorge Andrade, Max Armbruster et al. (2022): „A YAP/TAZ-TEAD signalling module links endothelial nutrient acquisition to angiogenic growth”. Nature Metabolism, DOI: 10.1038/s42255-022-00584-y

Gemeinsame Pressemitteilung des Max-Delbrück-Centrums für Molekulare Medizin und des Berlin Institute of Health in der Charité

Weitere Informationen:

https://www.mdc-berlin.de/de/vaskulaere-biomedizin Berlin Center for Translational Vascular Biomedicine
https://www.bihealth.org/de/aktuell/ag-potente-angiogenese-metabolismus AG Michael Potente
https://www.mdc-berlin.de/de/gerhardt AG Holger Gerhardt

Media Contact

Christina Anders Kommunikation
Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Kommunikation mithilfe von Molekülen

Die Europäische Union finanziert ein Projekt für die Entwicklung eines neuen Konzepts der Informationsübertragung für aktive implantierte medizinische Geräte im Rahmen ihres Förderprogramms Horizont Europa. Für das Projekt ERMES stellt…

Konzeptneurone sind Bausteine der Erinnerung

Bonner Forschende klären die Funktion von spezialisierten Nervenzellen bei der Gedächtnisbildung. Spezialisierte Nervenzellen im Schläfenlappen reagieren hochselektiv auf Bilder und Namen einer einzelnen Person oder konkreter Objekte. Forschende des Universitätsklinikums…

Innovative Forschung enthüllt neuen Weg zur Ethanolproduktion aus CO2

In einer bahnbrechenden Studie, die in der renommierten Zeitschrift „Energy & Environmental Science“ veröffentlicht wurde, haben Wissenschaftler*innen der Abteilung Interface Science am Fritz-Haber-Institut eine neuartige Methode zur Umwandlung des Treibhausgases…

Partner & Förderer