Vom Stroh zum Energieträger: Eintopf-Rezept für Wasserstoffgewinnung

Wasserstoffentwicklung im Labor LIKAT nordlicht

Was die Chemiker hier in bilateraler Zusammenarbeit vorlegen, ist gewissermaßen das Rezept für die Hauptzutat in einem Menü, an dessen Zubereitung Labors in aller Welt seit Jahren arbeiten: einen Mix unterschiedlicher Verfahren für die Energiegewinnung aus erneuerbaren Rohstoffen und für die Speicherung entsprechender Energieträger.

Wind und Sonne sind für die Stromerzeugung ja nicht jederzeit verfügbar. Biomasse fällt zyklisch an und ist auch räumlich recht ungleich verbreitet.

Eine Lösung wäre, die Energie, die diskontinuierlich aus ihnen gewonnen wird, zu speichern.
Nach Ansicht von Henrik Junge, Mitautor des nature-catalysis-Artikels, kommt dabei vor allem die chemische Speicherung in Frage. Und Wasserstoff steht als Option ganz oben.

H2-Hype und Ameisensäure

Bereits 2002 hatte der US-amerikanische Ökonom und Soziologe Jeremy Rifkin das Konzept einer Wasserstoffwirtschaft skizziert. H2 soll fossile Brennstoffe ersetzen, deren steigende Nutzung für die globale Erwärmung verantwortlich gemacht wird.

Das Europäische Parlament forderte 2007 in einer Erklärung, bis 2025 eine umweltfreundliche Wasserstoffwirtschaft samt Infrastruktur zu schaffen. In den Forschungszentren der Welt setzte ein regelrechter H2-Hype ein, sagt Henrik Junge. Für die Labors gibt es tatsächlich viel zu tun.

Als Gas beansprucht Wasserstoff ein enormes Volumen. Herkömmlich speichert man es deshalb als Flüssigkeit bei -253 Grad Celsius oder unter hohem Druck. Effektiver ist es, H2 chemisch zu speichern, etwa in Ameisensäure. Deren Moleküle verwahren den Wasserstoff sozusagen ohne Kühlung und Druck bis zu seinem Gebrauch, z.B. in Brennstoffzellen für eine nachhaltige Stromerzeugung.

Eine offene Frage war lange Zeit, wie sich die Ameisensäure ebenso effektiv wieder in H2 umwandeln lässt. Das funktionierte bis dahin nur bei höheren Temperaturen, was sich negativ auf die Energiebilanz auswirkte, und unter Bildung von Kohlenmonoxid, das nicht nur für Menschen, sondern auch für Brennstoffzellen giftig ist.

Eine Antwort kam 2008 aus dem LIKAT, dort gelang es einem Team, H2 bei Raumtemperatur aus Ameisensäure katalytisch freizusetzen. Dies lief unter Leitung von LIKAT-Direktor Matthias Beller und Arbeitsgruppenleiter Henrik Junge. Seither ist die Ameisensäure im Zusammenhang mit der Wasserstoffwirtschaft weltweit zu einem heißen Thema geworden, wie Junge sagt. Labors in der Schweiz, in Japan und in den Niederlanden arbeiten daran. Die Kernkompetenz dafür hat das LIKAT.

Mit Stroh und Zigarettenfiltern

Der Trick des aktuellen Verfahrens zur Herstellung von Wasserstoff liegt in der Idee, zunächst einmal Ameisensäure herzustellen. Eine treibende Kraft an diesem Projekt ist Yang Li, die in Junges Gruppe als Postdoktorandin arbeitete. Inspiriert von den Arbeiten am LIKAT befasste sie sich zunächst mit der chemischen Aufspaltung von Biomasse. Sie experimentierte u.a. mit Stroh und Lignocellulose (Holzschnitze), mit Bambus und Schilf.

Nachdem Yang Li im ersten Schritt vom Stroh zur Ameisensäure gelangt war, musste sie nun im zweiten Schritt H2 gewinnen.
Die Herausforderung bestand nach Henrik Junges Worten darin, beide Schritte in einem einzigen Reaktionsgefäß ablaufen zu lassen. Es handelt sich um zwei verschiedene Verfahren mit zwei unterschiedlichen Katalysatoren, die sich in ein und derselben Reaktionslösung normalerweise ins Gehege kommen.

Es galt hier das richtige Paar zu finden, das friedlich koexistiert, denn alle Zutaten – etwa Stroh, Lösungsmittel, Katalysatoren – werden gemeinsam in den Topf gegeben. Eben wie beim traditionellen Eintopf. Dass dies tatsächlich gelang, hat nature catalysis veranlasst, die Arbeit so prominent zu präsentieren.

Dezentrale Anwendung

Der Test geeigneter Katalysatoren und das „Feintuning“ des Verfahrens liefen schon am neuen Wirkungsort von Yang Li, an der Universität in X’ian. Dort stand ihr ein weiterer LIKAT-Forscher zur Seite. Und auch Mathias Beller und Henrik Junge flogen nach X’ian, um die junge Chemikerin mit Erfahrung und Ideen zu unterstützen.

Nun mailte ihnen die chinesische Kollegin, der nature-catalysis-Artikel sei momentan der Renner in der wissenschaftlichen Community ihres Landes, die stark in den sozialen Medien vernetzt ist.

Das One-pot-Vorgehen macht das Verfahren besonders attraktiv für eine dezentrale Anwendung in der Landwirtschaft. Gemeinsam mit Partnern lassen sich damit Pilotanlagen entwickeln, in denen die Aufbereitung von Biomasse und die H2-Produktion gekoppelt sind. – Ähnlich, wie dies für Windkraft schon existiert, und zwar durch Kombination mit der Elektrolyse, die „überschüssigen“ Strom, für den momentan kein Bedarf da ist, in Wasserstoff umwandelt.

Originalarbeit in nature catalysis: DOI: 10.1038/s41929-018-0062-0

Media Contact

Dr. Barbara Heller idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

»PASAWIS« – System für eine vollständige manuelle Prüfung von Bahnradsätzen

Fraunhofer IZFP auf der InnoTrans 2024: Die Materialprüfung bei Radsätzen von Schienenfahrzeugen ist integraler Bestandteil eines sicheren Schienenverkehrs. In kleineren Werkstätten wird eine solche Prüfung zumeist händisch durchgeführt. Eine Speicherung…

Ein Shaker für die Bauforschung: Geschüttelt, nicht gerührt

Mehrstöckige Holzbauten liegen im Trend. Damit ihnen starker Wind oder ein Erdbeben nichts anhaben können, müssen genügend Aussteifungen im Tragwerk vorhanden sein. Die Grundlagen hierzu liefern Computerberechnungen. Um diese in…

Drucken mit Erdmaterialien

ETH-Forschende haben ein schnelles, robotergestütztes Druckverfahren für Erdmaterialien entwickelt, das ohne Zement auskommt. Ganze Häuser können aus Lehm oder Erde gebaut werden. Das Material ist billig, fast überall verfügbar und…

Partner & Förderer