Tumor-Therapie im Spiegel – Checkpoint-Blockade durch D-Peptid für Immuntherapie gegen Krebs

Viele Tumore tricksen das Immunsystem aus, indem sie z.B. sogenannte Immun-Checkpoints von T-Zellen dazu bringen, die Immunreaktionen herunterzufahren. Ein stabiles „spiegelbildliches“ Peptid soll einen Immun-Checkpoint spezifisch blockieren. (c) Wiley-VCH

T-Lymphozyten tragen verschiedene Immun-Checkpoints auf ihrer Oberfläche: solche, die das Immunsystem ankurbeln, und solche, die Immunreaktionen unterdrücken, wenn sie zu ihnen passende Liganden auf der Oberfläche der „abgecheckten“ Zellen „entdecken“.

Programmed Cell Death Protein 1 (PD-1) ist ein solcher Immun-Checkpoint. Bindet der Liganden PD-L1 an PD-1, wird die Immunantwort gehemmt, um zu verhindern, dass gesunde, körpereigene Zellen angegriffen werden.

Leider „tarnen“ sich viele Tumore mit einer besonders hohen Zahl an PD-L1 und werden dadurch verschont. Eine Blockade der Wechselwirkung zwischen PD-1 und PD-L1 kann die Krebs-Immunität in der Mikroumgebung von Tumoren normalisieren.

Bisherige therapeutische Ansätze brachten jedoch nicht den gewünschten Erfolg und oft entwickelte der behandelte Tumor eine Resistenz.

Ein alternatives Angriffsziel könnte der neu entdeckte Immun-Checkpoint TIGIT sein, der auf das Molekül PVR mit einem immunsuppressiven Signal reagiert.

Die Forscher um Yanfeng Gao und Lei Liu von der Zhengzhou-Universität, der Tsinghua-Universität in Peking und der Sun-Yat-sen-Universität in Shenzhen stellten anhand von RNA-Expressions-Daten aus dem Cancer Genome Atlas sowie Datensätzen aus Gene Expression Omnibus fest, dass TIGIT in vielen Tumoren häufiger vorkommt als PD-1, auch in solchen mit einer Resistenz gegenüber einer anti-PD-1-Therapie.

Als Wirkstoff wollten sie Peptide einsetzen, da diese bei gleich hoher Affinität und Spezifizität wie Antikörper tiefer ins Gewebe eindringen, wesentlich weniger unerwünschte immunologische Nebenwirkungen auslösen und leichter herstellbar sind.

Der Nachteil: Im Körper werden sie sehr rasch von Proteasen abgebaut. Die Forscher setzten daher auf Peptid-„Spiegelbilder“, die gegenüber Proteasen stabil sind. Aminosäuren können in der natürlichen L- oder einer dazu spiegelbildlichen, künstlichen D-Form vorliegen. Aus D-Aminosäuren aufgebaute D-Peptide sind wesentlich langlebiger als L-Peptide.

Um ein geeignetes Peptid zu finden, wählten die Forscher die „Spiegelbild-Phagendisplay-Technik“. Beim Phagendisplay werden sehr großen Zahlen mehrerer biotechnologisch hergestellter Peptide auf der Oberfläche von Phagen (Viren, die Bakterien befallen) präsentiert und solche selektiert, die an das gewählte Zielmolekül binden.

Die Treffer werden in Bakterien vermehrt und durchlaufen weitere Selektionsrunden, bis am Ende besonders stark bindende Peptide übrig sind. Beim Spiegelbild-Phagendisplay werden zunächst L-Peptide präsentiert, aber solche ausgewählt, die an das Spiegelbild des Zielmoleküls binden. Dafür synthetisierten die Forscher ein TIGIT-Teilstück in der D-Fassung.

Von dem am stärksten bindenden L-Peptid stellten sie dann die spiegelbildliche D-Version her, die nun ihrerseits das natürliche TIGIT/PVR bindet.

Das so entwickelte D-Peptid DTBP-3 blockiert effektiv die Wechselwirkung von TIGIT mit PVR, ist Protease-stabil und hemmt Wachstum und Metastasierung anti-PD-1-resistenter Tumor-Modelle.

Angewandte Chemie: Presseinfo 12/2020

Autor: Yanfeng Gao, Sun Yat-Sen University (China)

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.

https://doi.org/10.1002/ange.202002783

http://presse.angewandte.de

Media Contact

Dr. Karin J. Schmitz Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Mit Physik mehr Bier im Glas

Ist Schaum in der Badewanne oder auf dem Bier durchaus gewünscht, ist die Vermeidung von Schaum – beispielsweise in industriellen Prozessen – ein viel diskutiertes Thema. Oftmals werden Flüssigkeiten Öle…

Reliefkarte für Genverstärker

Wie stark wirkt ein Genschalter auf sein Gen? Ein Berliner Forschungsteam hat ein Register aus Genverstärkern, deren Lage im Genom sowie ihrer Aktivierungsstärke in Mäuse-Stammzellen erstellt. Dabei entdeckten sie DNA-Muster,…

Ultraschnelle Videokamera für elektrische Felder

Von Heinrich Hertz zu Terahertz: High-Tech-Anwendungen in der Optoelektronik arbeiten heute mit ultraschnellen elektrischen Schwingungen und erreichen teilweise Frequenzen bis in den Terahertz-Bereich. Einem Team der Universitäten Bayreuth und Melbourne…

Partner & Förderer