Synthetische Biologie: Proteine setzen Vesikel in Bewegung

Simulationen zeigten, dass es zwei mögliche Mechanismen gibt, wie die Min-Proteine mit den Liposomen interagieren. | © J. Willeke

Biophysiker haben ein neues zellähnliches Transportsystem konstruiert und damit auf dem Weg zur künstlichen Zelle einen wichtigen Fortschritt erzielt.

Künstliche Zellen mit lebensähnlichen Eigenschaften aus minimalen Komponenten nachzubauen ist ein wichtiges Ziel der Synthetischen Biologie. Die Fähigkeit zur eigenständigen Fortbewegung ist dabei eine zentrale Eigenschaft, die im Reagenzglas nur schwer zu rekonstruieren ist. Ein Team um die Physiker Erwin Frey, Inhaber des Lehrstuhls für Statistische und Biologische Physik an der LMU, und Petra Schwille vom MPI für Biochemie ist dabei nun einen wichtigen Schritt vorangekommen, wie die Forschenden im Fachmagazin Nature Physics berichten.

Den Wissenschaftlerinnen und Wissenschaftlern ist es gelungen, von einer Lipidmembran umschlossene Vesikel – sogenannte Liposomen – auf einer tragenden Membran ständig in Bewegung zu halten. Angetrieben werden sie durch die Wechselwirkung der Vesikelmembran mit bestimmten Proteinmustern, die wiederum den biochemischen „Treibstoff“ ATP benötigen. Hervorgerufen werden diese Muster durch ein bekanntes System für die biologische Musterbildung: Das System von Min Proteinen, das im Bakterium E. coli die Zellteilung steuert. Experimente in Schwilles Labor haben gezeigt, dass sich in dem künstlichen System membranbindende Min-Proteine asymmetrisch um die Vesikel anordnen und so mit diesen interagieren, dass sie sich in Bewegung setzen. Dabei binden die Proteine sowohl an die tragende Membran als auch die Vesikel selbst. „Gerichteten Transport von großen Membranvesikeln finden wir sonst nur in höheren Zellen, dafür sind dort komplexe Motorproteine zuständig. Dass kleine bakterielle Proteine dazu in der Lage sind, hat uns komplett überrascht“ kommentiert Schwille. „Es ist derzeit weder klar, was die Proteinmoleküle an der Membranoberfläche genau machen, noch wofür Bakterien solche eine Funktion benötigen könnten.“

Zwei mögliche Mechanismen

Freys Team identifizierte mithilfe theoretischer Analysen zwei unterschiedliche Mechanismen, die hinter der Bewegung stecken könnten: „Ein möglicher Mechanismus ist, dass die Proteine auf der tragenden Membran mit denen auf der Vesikeloberfläche wie in einer Art Reißverschluss wechselwirken und molekulare Verbindungen aufbauen oder auflösen“, erklärt Frey. „Wenn auf einer Seite mehr Proteine sind als auf der anderen, öffnet sich dort der Reißverschluss, während er sich auf der anderen schließt. Das Vesikel bewegt sich dann in die Richtung, in der sich weniger Proteine befinden.“ Die zweite Möglichkeit für einen Mechanismus besteht darin, dass die membrangebundenen Proteine die Vesikelmembran deformieren und deren Krümmung verändern. Diese Formänderung verursacht dann die Vorwärtsbewegung.

„Beide Mechanismen sind im Prinzip möglich“, betont Frey. „Was wir aber mit Sicherheit wissen ist, dass die Proteinmuster auf der Unterlage und auf dem Vesikel ursächlich für die Bewegung sind. Damit sind wir auf dem Weg zur künstlichen Zelle einen riesigen Schritt vorangekommen.“ Die Autoren sind überzeugt, dass ihr System zukünftig als Modellierungsplattform für die Entwicklung künstlicher Systeme mit lebensähnlichen Bewegungen dienen kann.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Erwin Frey
Statistische und Biologische Physik
Fakultät für Physik der LMU
E-Mail: frey@lmu.de
Tel.: +49 (0) 89 / 2180-4538
https://www.theorie.physik.uni-muenchen.de/lsfrey/members/group_leaders/erwin_fr…
https://www.theorie.physik.uni-muenchen.de/lsfrey/group_frey/index.html

Originalpublikation:

Meifang Fu, Tom Burkart, Ivan Maryshev, Henri G. Franquelim, Adrián Merino-Salomón, María Reverte-López, Erwin Frey, Petra Schwille: Mechanochemical feedback loop drives persistent motion of liposomes. Nature Physics 2023
https://www.nature.com/articles/s41567-023-02058-8

Synthetische Biologie: Proteine setzen Vesikel in Bewe … – LMU München

Media Contact

LMU Stabsstelle Kommunikation und Presse
Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Das Auto als rollender Supercomputer

Moderne Autos sind mit Elektronik vollgepackt. Das Management der vielen Rechner und Assistenzsysteme ist komplex, zudem erhöhen die Kabelbäume das Gewicht der Fahrzeuge. Fraunhofer-Forschende arbeiten im Verbundprojekt CeCaS an einer…

Digitaler Zwilling für flexible Postsendungen

Biegeschlaffe Postsendungen mit flexibler Verpackung – sogenannte „Polybags“ – stellen Logistiker bei der automatischen Sortierung vor Probleme. Dank moderner Simulationsmethoden gibt es dafür nun eine breit anwendbare Lösung. Wer online…

Klebstoffe aus Federn

Klebstoffe beruhen fast immer auf fossilen Rohstoffen wie Erdöl. Fraunhofer-Forschende haben nun ein Verfahren entwickelt, mit dem der biobasierte Rohstoff Keratin erschlossen wird. Die leistungsfähige Protein-Verbindung ist beispielsweise in Hühnerfedern…

Partner & Förderer