Stuttgarter und Tübinger Chemiker entwerfen RNA zur Bindung des Botenstoffes cGMP
Cyclisches Guanosinmonophosphat (cGMP) ist ein wichtiger sekundärer Botenstoff, der für die Weiterleitung von Signalen in der Zelle verantwortlich ist.
Ein Team um Prof. Clemens Richert vom Institut für Organische Chemie der Universität Stuttgart und den Tübinger Biochemiker Prof. Robert Feil hat jetzt eine RNA entworfen, die cGMP bindet. Wie die Gruppe in der Zeitschrift Angewandte Chemie*) berichtet, lässt sich die cGMP-Signalkaskade in gentechnisch veränderten Zellen, die diese RNA herstellen, unterdrücken.
cGMP spielt beispielsweise bei der Relaxation der glatten Muskulatur der Blutgefäße und damit bei der Regulation des Blutdrucks eine wichtige Rolle. Fehlregulationen des cGMP-Signalwegs können im Zusammenhang mit Herz-Kreislauf-Erkrankungen stehen.
Experimentelle Manipulationen des endogenen cGMP-Levels in Zellen sollen zu einem besseren Verständnis der räumlich-zeitlichen Dynamik und der Funktion von cGMP führen. Während es mehrere Wege der Stimulation von cGMP gibt, etwa durch Stickstoffmonoxid (NO), fehlte Forschern bisher noch eine Möglichkeit, die zelluläre cGMP-Konzentration künstlich zu senken.
Wissenschaftler von den Universitäten Stuttgart und Tübingen haben jetzt eine Methode entwickelt, mit der sie cGMP-Moleküle in Zellen „abfangen“ können. Die Zellen werden dazu gentechnisch so verändert, dass sie speziell designte RNA-Moleküle herstellen, die cGMP binden.
RNA, Ribonukleinsäure, kennen wir normalerweise als Baustein für Ribosomen, Transporter für Aminosäuren und als Boten-RNA, die die Baupläne von der DNA kopiert und zu den Ribosomen transportiert, wo dann die Proteinbiosynthese abläuft.
Inzwischen sind weitere physiologische Rollen entdeckt worden, etwa katalytisch aktive RNAs oder RNAs, die über eine Bindung an komplementäre Sequenzen die Genexpression regulieren. Daneben existieren so genannte Riboswitches, Sequenzen in der Boten-RNA, die niedermolekulare Metabolite binden und daraufhin die Genexpression regulieren.
Dem Team um den Stuttgarter Chemiker Clemens Richert und den Tübinger Biochemiker Robert Feil ist es jetzt gelungen, die Konzentration kleiner Moleküle, die zur Basenpaarung fähig sind, in Zellen durch speziell entworfene RNA-Sequenzen zu reduzieren.
Dazu entwickelten die Stuttgarter Chemiker ein spezielles Faltungsmotiv, das cGMP bindet. Die Struktur basiert auf einem RNA-Dreifach-Strang, einem so genannten Triplex. Einer der drei Stränge bildet eine Schlaufe, die die Bindetasche für cGMP umrahmt. Dieses Motiv wiederholt sich mehrfach in einer langen kontinuierlichen Sequenz, daher tauften die Forscher ihr RNA-Konstrukt „Endless“.
Um die Funktionalität des „Endless“-Konstruktes in lebenden Zellen zu testen, erzeugten die Tübinger Biochemiker ein künstliches Gen, das für die „Endless“-RNA kodiert, und schleusten es in aus Mäuse-Blutgefäßen gewonnene Zellen ein, einem gut erforschten Modell zur Untersuchung von cGMP-Signalwegen.
NO löst bei diesen Zellen über cGMP übertragene Signalkaskaden aus. In Zellen, die „Endless“ exprimierten, waren diese unterdrückt und die cGMP-Level deutlich niedriger als bei Kontroll-Zellen. Die „Endless“-RNA wirkt als „Auffangbecken“ für cGMP und sollte bei der weiteren Erforschung der physiologischen Rolle von cGMP gute Dienste leisten können.
*) Originalpublikation:
Christoph Kröner, Dr. Martin Thunemann, Sven Vollmer, Manuela Kinzer, Prof. Robert Feil and Prof. Clemens Richert: Endless – A Purine-Binding RNA Motif that Can Be Expressed in Cells
Angewandte Chemie vom 9. Juli 2014, DOI: 10.1002/ange.201403579
Weitere Informationen:
Prof. Clemens Richert., Universität Stuttgart, Institut für Organische Chemie, Tel. 0)711/685-64311, E-Mail: lehrstuhl-2@oc.uni-stuttgart.de
Media Contact
Weitere Informationen:
http://www.uni-stuttgart.de/Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Kobalt-Kupfer-Tandem gelingt die Umwandlung von Kohlendioxid zu Ethanol
Enge Nachbarschaft von Kobalt und Kupfer auf einer Elektrode ermöglicht die selektive Umwandlung des Treibhausgases CO₂ zu Ethanol – Nachhaltigkeit im Fokus der chemischen Forschung. Die anhaltende Freisetzung von Kohlendioxid…
Parkinson: Hirnstimulation kann Dopamineffekt nachahmen
Charité-Forschende entschlüsseln Signale, die willentlichen Bewegungen vorausgehen. Verlangsamte Bewegung, Zittern, steife Muskeln: Symptome, die für eine Parkinson-Erkrankung typisch sind. Verantwortlich ist der Verlust des auch als Glückshormon bekannten Botenstoffes Dopamin,…
Bestrahlung von innen – endobronchiale Brachytherapie
… am UKL ermöglicht zielgenaue Behandlung von Lungenkarzinomen. An der Klinik und Poliklinik für Strahlentherapie des Universitätsklinikums Leipzig können Patient:innen, die an einem im Bronchus sichtbaren Lungenkarzinom mit geringer Ausdehnung…