Signifikante Unterschiede zwischen den krebsfördernden Enzymen USP25 und USP28 identifiziert

Struktur der katalytischen Domäne von USP28. Diese liegt als Dimer aktiv in der Zelle vor und kann jederzeit sein Substrat Ubiquitin (orange) binden und verarbeiten. [AG Kisker/Rudolf-Virchow-Zentrum]

Das fortwährende Zusammenspiel aus Produktion und Abbau von Proteinen zählt zu den zentralen Steuerungskräften des zellulären Metabolismus. Ein Kernmechanismus dieser Regulation ist die Markierung eines Proteins mit Ubiquitin, einem kleinen Polypeptid, das u.a. als Signal für den Proteinabbau dient.

Durch Enzyme aus der Gruppe der Deubiquitinasen kann die Ubiquitinierung rückgängig gemacht und das Protein gerettet werden. Man vermutet, dass in Krebszellen diese gegenläufigen Prozesse aus dem Gleichgewicht geraten.

In diesem Zusammenhang sind in den letzten Jahren die Deubiquitinasen als vielversprechende Wirkstoffziele einer zukünftigen Krebstherapie in den Fokus der Wissenschaft gerückt.

Strukturen der katalytischen Domänen enträtselt

Die Studie fokussierte sich speziell auf die Deubiquitinasen USP25 und USP28. Beide Enzyme sind wichtig für die Entwicklung verschiedenartiger Tumore. Die Forschung der beiden Strukturbiologen Dr. Florian Sauer und Theresa Klemm aus der Arbeitsgruppe von Prof. Dr. Caroline Kisker am Rudolf-Virchow-Zentrum liefert wichtige Einblicke in die Struktur und Funktion der beiden Deubiquitinasen USP25 und USP28.

Dabei gelang es ihnen, mittels Röntgenkristallographie, die dreidimensionale Struktur der zentralen katalytischen Domänen beider evolutionär nahe verwandten Enzyme zu entschlüsseln und dadurch sowohl Gemeinsamkeiten als auch entscheidende Unterschiede zwischen beiden Proteinen aufzudecken.

„Überraschende Erkenntnisse dabei waren, dass USP25 trotz seiner strukturellen Ähnlichkeit zu USP28 sowohl in isolierter Form, als auch in Zellen inaktiv ist und dass es einen Zusammenhang zwischen dem oligomeren Zustand und seiner Aktivität gibt.“, schildert Sauer. Die Analyse der Forscher zeigte, dass das inaktive USP25 ein Tetramer bildet, also einen aus vier Untereinheiten aufgebauten Molekülkomplex.

Das aktive USP28 hingegen liegt als Dimer vor, es besteht also aus zwei identischen Untereinheiten. „Durch einfügen von Veränderungen, sog. Mutationen, die in Krebszellen gefunden wurden, konnten wir zeigen, dass das USP25 Tetramer in zwei USP28-artige Dimere zerfällt und damit die Selbsthemmung des Enzyms aufgehoben wird.“, berichtet Klemm.

Neue Wegweiser für Krebsmedikamente

Dieses Wissen kann nun in die weitere Forschung an spezifisch wirksamen, und somit nebenwirkungsarmen Krebsmedikamenten einfließen. „Zum einen wurden neue Ansatzpunkte erkannt, die beispielsweise dazu dienen können, maßgeschneiderte Wirkstoffe zu entwickeln, die nur USP28 adressieren und dabei das für die Immunantwort so wichtige USP25 aussparen“, sagt Sauer.

„Zum anderen scheint es bei der Medikamentenentwicklung sinnvoll zu sein, auf eine Behinderung der Aktivierung des an sich inaktiven USP25 abzuzielen“, ergänzt Klemm.
Neben dem Rudolf-Virchow-Zentrum der Universität Würzburg war die Abteilung für Klinische Tumorbiologie des Universitätsklinikums Tübingen an dieser Forschungsarbeit beteiligt. Die Deutsche Forschungsgemeinschaft (DFG) förderte das Vorhaben über die Projekte „Targeting Therapeutic Windows in Essential Cellular Processes for Tumor Therapy“ (FOR 2314) und „Ubiquitylierung verstehen: Von molekularen Mechanismen zu Krankheiten“ (GRK 2243).

Personen

Dr. Florian Sauer (Postdoktorand) und Theresa Klemm (Doktorandin) forschen in der Arbeitsgruppe von Prof. Dr. Caroline Kisker am Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg.

Prof. Dr. Caroline Kisker ist unter anderem Leiterin des Lehrstuhls für Strukturbiologie und Dekanin der Graduate School of Life Sciences der Universität Würzburg. Seit April 2016 gehört sie zur Doppelspitze in der Leitung des Rudolf-Virchow-Zentrums für Experimentelle Biomedizin.

Das Rudolf-Virchow-Zentrum

Das Rudolf-Virchow-Zentrum gehört als Zentrale Einrichtung zur Universität Würzburg. Die Forschungsgruppen arbeiten auf dem Gebiet der Schlüsselproteine, die für die Funktion von Zellen und damit für Gesundheit und Krankheit besonders wichtig sind.

Prof. Dr. Caroline Kisker (Rudolf-Virchow-Zentrum)
Tel. 0931 31 80381, caroline.kisker@virchow.uni-wuerzburg.de

Dr. Daniela Diefenbacher (Pressestelle, Rudolf-Virchow-Zentrum)
Tel. 0931 3188631, daniela.diefenbacher@uni-wuerzburg.de

Florian Sauer, Theresa Klemm, Ravi B. Kollampally, Ingrid Tessmer, Radhika K. Nair,
Nikita Popov, Caroline Kisker: Differential Oligomerization of the Deubiquitinases USP25 and USP28 Regulates their Activities, Molecular Cell (2019), https://doi.org/10.1016/j.molcel.2019.02.029

https://www.uni-wuerzburg.de/rvz/neuigkeiten/single/news/signifikante-unterschie…

Media Contact

Dr. Daniela Diefenbacher idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer