Richtungsweisendes Molekül auf dem Weg in den Quantencomputer

Prof. Dr. Winfried Plass (r.) und Benjamin Kintzel mit dem Kristall eines molekularen Nanomagneten.
Foto: Jens Meyer/Uni Jena

Forschende der Universität Jena und Universität Florenz entwickeln Kobaltverbindung mit besonderen Quanten-Eigenschaften.

In Quantencomputern werden keine elektrischen Schaltkreise ein- oder ausgeschaltet, sondern stattdessen quantenmechanische Zustände verändert. Dafür braucht es geeignete chemische Verbindungen. Einem Forschungsteam der Universität Jena und der Universität Florenz ist es nun gelungen, eine solche Verbindung herzustellen. Das Besondere daran: Ihre quantenmechanischen Eigenschaften sind unterschiedlich, je nachdem aus welcher Richtung auf die Verbindung geschaut wird.

„Richtungsweisende“ Eigenschaften

„Wenn ich einen Kristall in der Hand halte und aus verschiedenen Perspektiven betrachte, dann sieht er auf jeder Seite anders aus“, erklärt Benjamin Kintzel, der die Substanz am Institut für Anorganische und Analytische Chemie der Universität Jena hergestellt hat. „Deswegen war es auch so ein Erfolg, tatsächlich Kristalle der neuen Verbindung herzustellen und untersuchen zu können. Die Moleküle in einem Kristall sind regelmäßig angeordnet. Deshalb sind auch die quantenmechanischen Eigenschaften der Moleküle abhängig davon, wie der gesamte Kristall im Raum orientiert ist. Durch die unterschiedliche Orientierung im Raum und den entsprechenden Blickwinkel ist es möglich, die besonderen quantenmechanischen Effekte genau und von allen Seiten zu untersuchen.“

Elektrisch steuerbare Quantenbauteile

Der Effekt, den das Team um Prof. Dr. Winfried Plass von der Universität Jena untersuchte, war die magnetische Wechselwirkung zwischen den Elektronen dreier Kobalt-Atome, die in dem neuartigen Molekül zu einem gleichseitigen Dreieck angeordnet sind. Darüber berichten sie in der renommierten Fachzeitschrift „Angewandte Chemie“.

„Grob vereinfacht gesagt, sind Elektronen elektrisch geladene Quanten-Teilchen, die sich bewegen“, beschreibt Plass die verwendete Methode, die auch Elektronenspin-Resonanz genannt wird. „Ihre quantenmechanischen Zustände können durch magnetische Felder geschaltet werden. Das lässt sich auch bei Elektronen untersuchen, die sich in Molekülen befinden. Nicht nur das: Wir können diese Eigenschaft unter bestimmten Bedingungen durch das Anlegen von elektrischen Feldern steuern. Um sie künftig als Recheneinheit in einem Quantencomputer einzusetzen, ist das ein entscheidender Vorteil, denn die Technik, um elektrische Felder gezielt anzulegen, ist weit entwickelt.“

Kintzel ergänzt: „Es ist aber nicht so, dass in so einem Computer dann einfach ein Kristall stecken würde. Einzelne Moleküle würden genügen, die auf einer Oberfläche entsprechend angeordnet – und in unserem Fall auch räumlich orientiert – wären. Hieraus ließen sich noch einmal völlig neue Eigenschaften erschließen.“ Solche Perspektiven können nun anhand der neuen Kobaltverbindung genauer untersucht und verstanden werden.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Winfried Plass
Institut für Anorganische und Analytische Chemie der Friedrich-Schiller-Universität Jena
Humboldtstraße 8
07743 Jena
Tel.: 03641 9-48130
E-Mail: sekr.plass[at]uni-jena.de

Originalpublikation:

B. Kintzel, M. Fittipaldi, M. Böhme, A. Cini, L. Tesi, A. Buchholz, R. Sessoli, W. Plass: Spin‐Electric Coupling in a Cobalt(II)‐Based Spin Triangle Revealed by Electric Field‐Modulated ESR, Angewandte Chemie International Edition (2021). DOI: 10.1002/anie.202017116

http://www.uni-jena.de/

Media Contact

Vivien Busse Abteilung Hochschulkommunikation/Bereich Presse und Information
Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer