Rhesus-Proteine verladen Ionen, nicht Gas

Die Proteine der Amt-Familie transportieren Ammonium durch die Lipidmembran der Zelle. Quelle: Susana Andrade

Haben die Proteine das Gas Ammoniak oder das Ion Ammonium im Gepäck? Und ist das ein aktiver oder ein passiver Transport?

Lange rätselten Biochemikerinnen und Biochemiker über die Eigenschaften der Ammoniumtransportproteine (Amt), zu denen auch der Rhesus-Faktor, der als Blutgruppensystem bekannt ist, gehört. Bekannt war bisher, dass die Amt-Proteine Stickstoff in Bakterienzellen transportieren – in Pflanzen und Bakterien sind sie für dessen Aufnahme unerlässlich.

Bei Mensch und Tier regulieren sie den Säure- und Ionenhaushalt des Körpers. Ein Team von Wissenschaftlerinnen und Wissenschaftlern um Prof. Dr. Susana Andrade vom Institut für Biochemie der Universität Freiburg und Mitglied des Exzellenzclusters BIOSS Centre for Biological Signalling Studies, hat mit elektrophysiologischen Tests an synthetischen Lipidvesikel die Eigenschaften des Amt-Proteins mit großer Genauigkeit bestimmt.

Die Wissenschaftler verwendeten Proteine, die aus der Zellmembran von so genannten Archaeen stammen, Einzellern, die unter extremen Umweltbedingungen leben. Die Freiburger Forscherinnen und Forscher klärten bereits 2005 die Kristallstruktur eines solchen Proteins auf.

Nun fügten sie die Proteine in eine Schicht von Lipidmolekülen ein, an der sie Ionenströme direkt messen können. Das Team entdeckte, dass eine positive Ladung durch die Membran wandert: Nicht das Gas Ammoniak NH3, sondern das Ammonium-Ion NH4+ wird transportiert. Ihre Ergebnisse haben die Forscher in der Fachzeitschrift „Proceedings of the National Academy of Sciences of the USA“ veröffentlicht.

„Die Erkenntnisse lassen sich zum großen Teil auf die Rhesus-Proteine der Säuger übertragen“, sagt Andrade. Die Amt-Proteine ähneln stark den Rhesus-Proteinen des Menschen. Die Forscher testeten drei Amt-Proteine, die in den Bakterien vorkommen und bestimmten außerdem die Geschwindigkeit, mit der sie Ammonium durchlassen. „In Zukunft wollen wir einzelne Komponenten des Transporters verändern, um die genauen chemischen Vorgänge besser zu verstehen“, erklärt Andrade.

Der wissenschaftliche Streitpunkt um das Amt-/Rh-Protein entstand aus der Schwierigkeit, Ammoniak und Ammonium in Messungen zu unterscheiden, da die beiden Moleküle in einem ständigen Gleichgewichtsverhältnis mit Protonen ineinander umgewandelt werden. „Mit unserer In-vitro-Methode erreichen wir eine Genauigkeit, die endlich gültige Schlussfolgerungen über den Transportprozess zulässt.“ betont die Forscherin.

Originalpublikation:
Tobias Wacker, Juan J. Garcia-Celma, Philipp Lewe, and Susana L. A. Andrade, Direct observation of electrogenic NH4+ transport in ammonium transport (Amt) proteins, PNAS 2014; published ahead of print June 23, 2014, doi:10.1073/pnas.1406409111

Kontakt:
Prof. Dr. Susana Andrade
Institut für Biochemie
BIOSS Centre for Biological Signalling Studies
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203- 8719
E-Mail: andrade@bio.chemie.uni-freiburg.de

Media Contact

Rudolf-Werner Dreier Albert-Ludwigs-Universität Freiburg im Breisgau

Weitere Informationen:

http://www.uni-freiburg.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Graphen-Forschung: Zahlreiche Produkte, keine akuten Gefahren

«Graphene Flagship» nach zehn Jahren erfolgreich abgeschlossen. Die grösste je auf die Beine gestellte EU-Forschungsinitiative ist erfolgreich zu Ende gegangen: Ende letzten Jahres wurde das «Graphene Flagship» offiziell abgeschlossen. Daran…

Wie Bremsen im Gehirn gelockert werden können

Forschende lokalisieren gestörte Nervenbahnen mithilfe der tiefen Hirnstimulation. Funktionieren bestimmte Verbindungen im Gehirn nicht richtig, können Erkrankungen wie Parkinson, Dystonie, Zwangsstörung oder Tourette die Folge sein. Eine gezielte Stimulation von…

Wärmewende auf der GeoTHERM erleben

Als Innovationspartner in Sachen Wärmewende für Industrie und Kommunen stellt sich das Fraunhofer IEG auf der internationalen Fachmesse GeoTHERM vor. Auf seiner Ausstellungsfläche in Offenburg stellt es ab dem 29….

Partner & Förderer