Regulation des menschlichen Stoffwechsels viel komplexer als gedacht

Karte des menschlichen Stoffwechsels, jeder Punkt symbolisiert einen Metaboliten.
(c) Universität Göttingen

Der menschliche Stoffwechsel ist ein kompliziertes, fein abgestimmtes Netzwerk, in dem Stoffe in den Zellen abgebaut, umgebaut und aufgebaut werden. Enzyme steuern die biochemischen Reaktionen.

Ein internationales Forschungsteam mit Beteiligung der Universität Göttingen hat nun mit einer neuen Methode herausgefunden, dass die Regulation des Stoffwechsels komplexer ist als vermutet. Die Wissenschaftlerinnen und Wissenschaftler entdeckten bei 33 Enzymen bislang unbekannte Wechselwirkungen, in denen Moleküle deren Funktion beeinflussen. Die Ergebnisse sind bedeutend für die Entwicklung von Medikamenten gegen Stoffwechselkrankheiten.

Sie wurden in der Fachzeitschrift Science veröffentlicht.

Die Forschenden durchsuchten den Stoffwechsel nach Molekülen, die in biochemischen Reaktionen umgesetzt werden und die Funktion von Enzymen regeln können, sogenannten Metaboliten. Davon gibt es in einer Zelle Hunderte, wenn nicht Tausende. Es gleicht daher der sprichwörtlichen Suche nach der Nadel im Heuhaufen, die Metaboliten zu finden, die einen Einfluss auf Enzyme haben. Um die Suche zu vereinfachen, entwickelte das Team von Prof. Dr. Jared Rutter an der Universität Utah in den USA eine neue Methode: Sie erlaubt es, die Wechselwirkungen von Enzymen mit allen Metaboliten gleichzeitig zu kartieren. So konnten die Forschenden 33 Enzyme des Stoffwechsels systematisch untersuchen. Das offenbarte neue Wechselwirkungen, die auch in menschlichen Zellen nachgewiesen wurden.

„Die Entwicklung der neuen Methode ist ein Meilenstein in unserem Verständnis des menschlichen Stoffwechsels“, sagt Prof. Dr. Kai Tittmann von der Universität Göttingen, der mit seinem Team der Abteilung Molekulare Enzymologie an der Studie beteiligt war. „Für einige Enzyme, von denen bekannt ist, dass eine Fehlregulation eine wichtige Rolle bei schweren Krankheiten spielt, haben wir neue Regulationsmechanismen gefunden. Damit können neue Klassen von Medikamenten entwickelt werden, die den regulatorischen Metaboliten aus der Zelle nachempfunden sind und die zielgenau an Enzyme binden und diese steuern.“

Wissenschaftliche Ansprechpartner:

Prof. Dr. Kai Tittmann
Georg-August-Universität Göttingen
Göttinger Zentrum für Molekulare Biowissenschaften
Abteilung Molekulare Enzymologie
Julia-Lermontowa-Weg 3, 37077 Göttingen
Telefon: 0551- 39-177811
E-Mail: ktittma@gwdg.de
Internet: http://www.uni-goettingen.de/de/198266.html

Originalpublikation:

Kevin G. Hicks et al. Protein-metabolite interactomics of carbohydrate metabolism reveal regulation of lactate dehydrogenase. Science 2023. http://www.science.org/doi/10.1126/science.abm3452.

Weitere Informationen:

https://www.uni-goettingen.de/de/3240.html?id=7026 weitere Fotos

Media Contact

Thomas Richter Öffentlichkeitsarbeit
Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer