Proteinsynthese in den Kraftwerken der Zelle

Dreidimensionale Struktur eines Mitochondriums. Abbildung: Stefan Pfeffer / Copyright: MPI für Biochemie

Alle biochemischen Prozesse einer Zelle benötigen Energie, welche die Mitochondrien in Form des Energieträgers ATP zur Verfügung stellen. Für die Energieproduktion selbst benötigen die Mitochondrien Proteine. Doch wo kommen diese her?

Der Großteil wird aus dem Zellplasma in das Innere der Mitochondrien transportiert. Ihre Bauanleitungen sind in der Erbsubstanz DNA im Zellkern gespeichert. Einige wenige Proteine, die zur Energieproduktion nötig sind, werden jedoch direkt in den Mitochondrien produziert – von sogenannten Mito-Ribosomen. Während die Architektur der Ribosomen im Zellplasma in den letzten Jahrzehnten intensiv erforscht wurde, begannen Forscher erst kürzlich die Struktur der Mito-Ribosomen näher zu untersuchen.

Wissenschaftlern der Forschungsgruppe „Modellierung von Proteinkomplexen“ gelang es jetzt erstmals, die Struktur des Mito-Ribosoms in seiner natürlichen Umgebung an der inneren Mitochondrienhülle zu beschreiben. Die Mito-Ribosomen lagern sich hier zu größeren Komplexen, sogenannten Polysomen, zusammen und produzieren so gemeinsam viele Proteinkopien.

Die Forscher konnten auch zeigen, wie der Kontakt der Ribosomen mit der Mitochondrienhülle hergestellt wird: über das Membranprotein Mba1. „Wir glauben, dass Mba1 dabei nicht nur als Rezeptor für das Ribosom dient“, spekuliert Forschungsgruppenleiter Friedrich Förster, „sondern auch den Einbau der neu hergestellten Proteine in die Mitochondrienhülle unterstützt.“

Möglich sind derart detailreiche Einblicke in die Architektur und Kontakte des Ribosoms dank der Kryo-Elektronentomographie. Durch ein besonders schnelles Einfrieren auf minus 170°C bleibt die Struktur und die natürliche Anordnung der Ribosomen in der Zelle erhalten. Anschließend nehmen die Forscher eine Serie von Bildern unterschiedlicher Blickwinkel auf, die im Computer zusammengesetzt ein dreidimensionales Bild ergeben.

Originalveröffentlichung:
Pfeffer, S., Woellhaf, M.W., Herrmann, J.M., Förster, F.: Organization of the mitochondrial translation machinery studied in situ by cryo-electron tomography. Nature Commun, January 22, 2015
Doi: 10.1038/ncomms7019

Kontakt:
Dr. Friedrich Förster
Modellierung von Proteinkomplexen
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: foerster@biochem.mpg.de
http://www.biochem.mpg.de/foerster

Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de
http://www.biochem.mpg.de

http://www.biochem.mpg.de/foerster – Webseite der Forschungsgruppe „Modellierung von Proteinkomplexen“ (Friedrich Förster)
http://www.biochem.mpg.de/news – Weitere Pressemitteilungen des MPI für Biochemie

Media Contact

Anja Konschak Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Funktionsweise von Adrenalin-bindendem Rezeptor entschlüsselt

Leipziger Biophysiker verfolgen Mechanismus der Signalübertragung im Körper nach. G-Protein-gekoppelte Rezeptoren (GPCR) sind im menschlichen Körper allgegenwärtig und an vielen komplexen Signalwegen beteiligt. Trotz ihrer Bedeutung für zahlreiche biologische Vorgänge…

Eine Alternative für die Manipulation von Quantenzuständen

Forschende der ETH Zürich haben gezeigt, dass man die Quantenzustände einzelner Elektronenspins durch Elektronenströme mit gleichmässig ausgerichteten Spins kontrollieren kann. Diese Methode könnte in Zukunft in elektronischen Schaltelementen eingesetzt werden….

Neue Einblicke in das Entstehen kleinster Wolkenpartikel in der Arktis

Ny-Ålesund (Spitzbergen). Mobile Messgeräte ermöglichen die Untersuchung von atmosphärischen Prozessen in höheren Luftschichten, die von klassischen Messstationen am Boden bisher nicht erfasst werden. Die luftgetragenen Flugsysteme leisten somit einen wichtigen…

Partner & Förderer