Pilze filtern Medikamente aus dem Abwasser

Metallische Hohlkugel mit Pilzenzymen. Die Enzymreaktion (blaue Corona) ist mit einem Farbstoff sichtbar gemacht. Werner/TUD
Xenobiotika – dazu gehören Hormone, Schmerzmittel, Antibiotika, aber auch Röntgenkontrastmittel oder Industrie- und Agrarchemikalien – werden durch den Menschen über das Abwasser in die Stoffkreisläufe der Natur eingebracht.
Aktuelle Studien zeigen, dass allein in Deutschland jährlich etwa 300.000 Tonnen Mikroschadstoffe in die Wasserkreisläufe gelangen. Schon in sehr geringer Konzentration haben einige dieser Stoffe nachteilige Wirkungen auf unser Ökosystem und beeinflussen die Gewinnung von Trinkwasser negativ.
„Die bestehenden dreistufigen kommunalen Wasser- und Abwasserreinigungsanlagen sind nur teilweise in der Lage, diese Schadstoffe herauszufiltern. Selbst modernste Anlagen können keine vollständige Reinigung leisten.
Manche Mikroschadstoffe wie zum Beispiel Anti-Epileptika können bisher überhaupt nicht rausgefiltert werden. Über das Wasser gelangen sie in die Umwelt und verändern Fische und alle anderen lebenden Organismen“, umreißt die Projektleiterin Dr. Anett Werner das Problem.
„Noch gibt es für diese Stoffe keine gesetzlichen Grenzwerte, doch das wird sich ändern müssen. Dann steht in vielen Klärwerken in Deutschland der Ausbau einer vierten Reinigungsstufe an. In der Schweiz ist das an vielen Stellen schon erfolgt.“
Die Wissenschaftler der TU Dresden entwickeln ein Verfahren, das die chemischen Verbindungen der naturfremden Rückstände aufspalten kann. Dieses Biofiltersystem funktioniert auf der Basis von bestimmten Pilzenzymen.
Nur Ständerpilze (Basidiomyceten) besitzen diesen Enzym-Cocktail. Sie können ringförmige chemische Verbindungen, wie sie auch die kritischen Xenobiotika besitzen, aufspalten und schließlich zu deren Entfernung beitragen.
„Wir wollen ein Filtersystem entwickeln, das zumindest einen Teil der Mikroschadstoffe auf natürlichem Weg entfernt. Dabei helfen uns Pilze, deren Enzyme wie chemische
Scheren arbeiten. Die Scheren zerschneiden die Ringstrukturen der Medikamente, dadurch werden sie biologisch abbaubar. Wir isolieren die Enzyme, binden sie an hochporöse metallische Werkstoffe und bauen sie in Filter am Ende der Kläranlagen ein. Sobald die Enzyme nicht mehr arbeiten, werden die Kugeln entnommen, erhitzt und mit neuen Enzymen versehen“, so Werner.
Für das eigentliche Biofiltersystem mussten die Wissenschaftler eine Technologie zur Immobilisierung (Isolation & Fixierung) der Enzyme auf hochporöse Träger konstruieren. Als Trägermaterial wurden verschiedene Materialien erfolgreich getestet: metallische Hohlkugeln aus einem Sintermaterial, die kaum 4 Millimeter groß sind, Metallschäume, Membranen und Luffa-Schwämme, ein Naturmaterial, das als Naturstoff reichlich und günstig verfügbar ist und nach der Nutzung im Filter auch noch biologisch abgebaut werden kann. Die Fixierung auf einem Träger ist wichtig, damit die Enzyme in einem Filtersystem an Ort und Stelle arbeiten können.
Bisherige Laborversuche haben gezeigt, dass die Enzyme auf metallischen Hohlkugeln selbst nach acht Wochen noch aktiv sind. Dieser Zeitraum soll weiter optimiert werden. In einer Biofilteranlage müsste das Wasser etwa zwei bis acht Stunden verweilen bis die kritischen Substanzen abgebaut sind.
Zudem konnten die Wissenschaftler nachweisen, dass sich 15 Substanzen mithilfe der Pilzenzyme auf natürlichem Weg aus dem Wasser entfernen lassen – darunter Antibiotika, Schmerzmittel, Blutdrucksenker, Entwässerungsmittel und ein Anti-Epileptikum, für das es bisher keine praktikable technische Lösung gab.
Damit entwickeln die Bioverfahrenstechniker der TU Dresden einen wesentlichen Baustein zur nachhaltigen Wassernutzung. In Kürze wird das Biofiltersystem unter Realbedingungen getestet. Zukünftig soll das Verfahren auch für weitere Xenobiotika, wie Bisphenol-A, verschiedene Antibiotika und Pestizide optimiert werden.
Im Projekt XenoKat arbeiten unter der Leitung des Institutes für Naturstofftechnik an der TU Dresden die ASA Spezialenzyme GmbH, die BfG Bundesanstalt für Gewässerkunde sowie das CIMTT Zentrum für Produktionstechnik und Organisation der TU Dresden zusammen. Das Gesamtprojekt wird mit 700.000 EUR für den Zeitraum Mai 2017 bis Oktober 2019 vom Bundesministerium für Bildung und Forschung gefördert.
Dr.-Ing. Anett Werner
Leiterin Arbeitsgruppe Enzymtechnik
TU Dresden
Institut für Naturstofftechnik
Professur für Bioverfahrenstechnik
Tel.: +49 351 463-32594
Émail: anett.werner@tu-dresden.de
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge

Diagnose-App für Tierärzte
h_da-Forscherinnen entwickeln KI-gestütztes Tool. Drei Forscherinnen der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit zwei Tierärztinnen eine Diagnose-App für Haus- und Nutztiere. Sie soll Untersuchungen und Befunde in Veterinärpraxen vereinheitlichen, Krankheitsverläufe…

Die Geschwindigkeit der Zeit verändern
Künstliche Intelligenz in Robotern oder Kleidungstechnologie soll autonom auf gestresste oder gelangweilte Menschen reagieren – Team aus der Wahrnehmungspsychologie an EU-Projekt ChronoPilot beteiligt. Während sich im Stau die Sekunden und…

Nachhaltige Lösungen für Mobilität, Energie und Industrie
Hannover Messe 2023: Automatisiertes Fahren im ÖPNV, optische Filter aus dem Tintenstrahldrucker und ein intelligent vernetztes Experimentierfeld für die Energiesysteme der Zukunft: Diese und weitere Innovationen stellt das Karlsruher Institut…