Neuer Stoffwechsel im Pansenmikrobiom entdeckt

Das BakteriumPseudobutyrivibrio ruminis (grün), ein typisches Pansenbakterium, gewinnt Energie über zwei unterschiedliche Atmungsketten. Die eine benötigt Natriumionen, die andere Wasserstoffionen (H+). So passt es sich optimal an die schwankende Kochsalzkonzentration der Nahrung an. Grafik: Goethe-Universität/ Kuh: Shutterstock

Kühe können sich an Nahrung mit unterschiedlichem Kochsalzgehalt anpassen. Wie sie das machen, war bislang ein Geheimnis. Jetzt haben Forscher der Goethe-Universität im Mikrobiom des Pansens ein Bakterium entdeckt, das den Salzgehalt mit einem neuen Typ von Zellatmung reguliert.

Die Kuh kann Gras nur mithilfe von Milliarden Mikroorganismen in ihrem Pansen verwerten. Ein ganzer Zoo von Bakterien, Archaeen und Protozoen arbeitet dort wie am Fließband:

Zuerst spalten diese Einzeller die Cellulose, einen Vielfachzucker, auf. Andere Bakterien vergären die freigesetzten Zucker zu Fettsäuren, Alkoholen und Gasen wie Wasserstoff und Kohlendioxid. Schließlich verwandeln methanogene Archaeen diese beiden Gase zu Methan.

Eine durchschnittliche Kuh produziert etwa 110 Liter Methan pro Tag. Durch das Wiederkäuen entweicht es aus dem Maul, wird aber auch wieder mit Nahrungsbrei und vermischt. Dadurch kann der Kochsalzgehalt des Grasbreis stark schwanken (zwischen 60 – 800 milli-Mol Natriumchlorid (NaCl) pro Liter).

Wie sich die Bakterien des Pansens an diese stark schwankenden Kochsalzkonzentrationen anpassen, hat eine deutsch-amerikanische Forschergruppe jetzt herausgefunden: „Bioinformatische Analysen der Genome von Pansenbakterien führten unseren amerikanischen Kollegen Tim Hackmann zu der Vermutung, dass einige Pansenbakterien zwei unterschiedliche Atmungsketten haben. Eine davon funktioniert mit Natriumionen, die andere ohne“, erklärt Prof. Volker Müller von der Abteilung Molekulare Mikrobiologie und Bioenergetik an der Goethe-Universität. Müller schlug seiner Doktorandin Marie Schölmerich deshalb vor, einen typischen Vertreter im Mikrobiom von Wiederkäuen zu untersuchen: das Bakterium Pseudobutyrivibrio ruminis.

Marie Schölmerich hat zusammen mit der Bachelorstudentin Judith Dönig und dem Masterstudenten Alexander Katsyv das Bakterium kultiviert. Tatsächlich konnten sie beide Atmungsketten nachweisen. Wie die Forscher in der aktuellen Ausgabe der Proceedings of the National Academy of Sciences (PNAS) berichten, wird während der Zuckeroxidation der Elektronenüberträger Ferredoxin (Fd) reduziert. Reduziertes Ferredoxin treibt beide Atmungsketten an.

Die eine Atmungskette besteht aus dem Enzymkomplex Fd:NAD-Oxidoreduktase (Rnf- Komplex). Er transportiert Natriumionen unter Aufwendung von Energie aus der Zelle. Bei ihrem Wiedereintritt treiben die Natriumionen eine ATP-Synthase an, so dass ATP entsteht. Diese Atmungskette arbeitet nur in Gegenwart von Natrium-Ionen.

Fehlen Natrium-Ionen, bildet das Bakterium eine alternative Atmungskette mit einem anderen Enzymkomplex: Die Hydrogenase Fd:H+-Oxidoreduktase produziert Wasserstoff und pumpt Protonen aus der Zelle. Treten diese über eine zweite ATP-Synthase, die Protonen, aber keine Natriumionen akzeptiert, wieder in die Zelle ein, entsteht ebenfalls ATP.

„Bis heute ist dies das erste Bakterium, bei dem diese beiden einfachen, komplett unterschiedlichen Atmungsketten nachgewiesen wurden. Unsere bioinformatischen Analysen legen aber nahe, dass sie auch bei anderen Bakterien zu finden sind“, erklärt Marie Schölmerich. „Diese Anpassungsstrategie scheint also weiter verbreitet zu sein“, lautet ihre Vermutung.

Interessanterweise wurden die beiden Enzymkomplexe (Rnf-und Ech-Komplex) auch in evolutionsbiologisch alten Bakterien gefunden. Die Arbeitsgruppe von Prof. Müller hat sie eingehend untersucht, aber immer nur einen der beiden Enzymkomplexe gefunden, nie beide zusammen.

„Jetzt werden wir mit Methoden der synthetischen Mikrobiologie Hybride von Bakterien herstellen, die beide Komplexe enthalten, um diese für biotechnologische Prozesse zu optimieren. Dadurch kann man den zellulären ATP-Gehalt erhöhen. Dann lassen sich wertvollere Produkte herstellen“, erklärt Prof. Müller.

Geplant ist, die Atmungsketten einzusetzen, um durch die Fermentation von Synthesegasen Wertstoffe zu gewinnen. Dies ist Gegenstand der Untersuchungen in einem BMBF-geförderten Projekt.

Ein Bild zum Download finden Sie unter: http://www.uni-frankfurt.de/84412971

Bildtext: Das BakteriumPseudobutyrivibrio ruminis (grün), ein typisches Pansenbakterium, gewinnt Energie über zwei unterschiedliche Atmungsketten. Die eine benötigt Natriumionen, die andere Wasserstoffionen (H+). So passt es sich optimal an die schwankende Kochsalzkonzentration der Nahrung an. Grafik: Goethe-Universität/ Kuh: Shutterstock

Prof. Volker Müller, Molekulare Mikrobiologie und Bioenergetik, Campus Riedberg, Tel.: (069) 798-29507; VMueller@bio.uni-frankfurt.de

Schölmerich, M.C., Katsyv, A., Dönig, J., Hackmann, T., Müller, V. (20XX). Energy conservation involving two respiratory circuits. Proc. Natl. Acad. Sci. U.S.A., in press.

Media Contact

Dr. Anke Sauter idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Durchleuchten im Nanobereich

Physiker der Universität Jena entwickeln einen der kleinsten Röntgendetektoren der Welt Ein Röntgendetektor kann Röntgenstrahlen, die durch einen Körper hin­durchlaufen und nicht von ihm absorbiert werden, aufnehmen und somit ein…

Wer hat das Licht gestohlen?

Selbstinduzierte ultraschnelle Demagnetisierung limitiert die Streuung von weicher Röntgenstrahlung an magnetischen Proben.   Freie-Elektronen-Röntgenlaser erzeugen extrem intensive und ultrakurze Röntgenblitze, mit deren Hilfe Proben auf der Nanometerskala mit nur einem…

Mediterrane Stadtentwicklung und die Folgen des Meeresspiegelanstiegs

Forschende der Uni Kiel entwickeln auf 100 Meter genaue Zukunftsszenarien für Städte in zehn Ländern im Mittelmeerraum. Die Ausdehnung von Städten in niedrig gelegenen Küstengebieten nimmt schneller zu als in…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close