„Neuer“ Organismus wird fit für die Biotechnologie

Vibrio natriegens
Mikrobielle Biotechnologie/ TUM

Bernsteinsäure dient als wichtiger Ausgangsstoff für Chemikalien in der Pharmazie und Kosmetik, aber auch als Baustein für biologisch abbaubare Kunststoffe. Sie wird derzeit hauptsächlich aus petrobasierten Prozessen gewonnen. Forschende am Campus Straubing der Technischen Universität München (TUM) verwenden das Meeresbakterium Vibrio natriegens als Biokatalysator. Damit könnte sich Bernsteinsäure in nachhaltigen Produktionsverfahren aus nachwachsenden Rohstoffen herstellen lassen.

Das Meeresbakterium Vibrio natriegens zeichnet sich durch ein extrem schnelles Wachstum aus. Es ist der schnellst wachsende, nicht krankheitserregende Organismus, der bislang bekannt ist. Damit einher geht seine Fähigkeit, Substrate – die Ausgangsstoffe der Katalyse – sehr schnell aufzunehmen. „Wir arbeiten mit Hochdruck daran, Vibrio natriegens in der Biotechnologie zu etablieren“, sagt Bastian Blombach, Professor für Mikrobielle Biotechnologie an der TUM.

Das Team von Prof. Blombach am TUM Campus Straubing für Biotechnologie und Nachhaltigkeit arbeitet daran, mithilfe dieses Meeresbakteriums Produktionsprozesse zeiteffizienter und somit Ressourcen-schonender gestalten zu können sowie die benötigte Größe von biotechnologischen Anlagen zu verringern.

Meeresbakterium hilft bei der Herstellung der Bernsteinsäure

Die Forscherinnen und Forscher konnten nun am Beispiel der Bernsteinsäure das Potenzial dieses Meeresbakteriums aufzeigen. Bernsteinsäure ist organisch und kommt in fossilen Harzen wie Bernstein oder auch in Braunkohle vor. In der Natur ist die Säure zum Beispiel in unreifen Weintrauben, Rhabarber oder Tomaten zu finden.

Im Stoffwechsel aller Organismen kommt Succinat, das Salz der Bernsteinsäure, beim Abbau von Glukose als Zwischenstufe vor. Das natürliche Vorkommen der Bernsteinsäure im Stoffwechsel wird in der Biotechnologie nun genutzt, um sie gezielt durch Mikroorganismen wie dem von den Forschenden eingesetzten Meeresbakterium herstellen zu lassen. Dazu ist ein Verständnis der Stoffwechselleistung mikrobieller Plattformen wie Vibrio natriegens wesentlich.

Potenzial für die industrielle Biotechnologie

Das Team um Prof. Blombach nutzt Methoden des Metabolic Engineerings, um solche neuartigen mikrobiellen Systeme für die industrielle Biotechnologie zu entwickeln. Mittels moderner Methoden des Genetic Engineerings können dann maßgeschneiderte Zellfabriken entstehen.

Wie die Forschenden bei der Herstellung von Bernsteinsäure vorgegangen sind, erklärt Dr. Felix Thoma, Wissenschaftler an der Professur für Mikrobielle Biotechnologie und Erstautor der Studie: „Wir haben Plastikröhrchen mit einer Salzlösung gefüllt, in der Vibrio natriegens sich wohl fühlt, Glukose hinzugegeben und das Ganze luftdicht verschlossen. In Abwesenheit von Sauerstoff haben die Bakterien dann den Zucker und das im Medium gelöste CO2 zu Bernsteinsäure umgesetzt. Dieser Vorgang war nach etwa zwei bis drei Stunden abgeschlossen.“

Im weiteren Verlauf der Studie haben die Forschenden die Experimente im Bioreaktor durchgeführt. Dort konnten sie zusätzlich den pH-Wert kontrollieren, denn durch die Bildung der Säure wird dieser sonst mit der Zeit unwirtlich. Außerdem konnten sie genügend Substrate „nachfüttern“.

Ein Bakterium auf dem Weg zum wichtigen Prozesspartner

Bernsteinsäure zählt zu den zwölf zentralen Produkten, die zukünftig biotechnologisch hergestellt werden könnten, um einer petrochemischen Darstellung Konkurrenz zu machen. „Nur zwei Jahre Entwicklungsarbeit mit dem Meeresbakterium haben zu vergleichbaren Leistungsmerkmalen geführt, wie sie andere Systeme nach 15 bis 20 Jahren aufweisen. Damit ist das Meeresbakterium ein neuer potenter Akteur in der industriellen Biotechnologie“, sagt Thoma.

Durch gezielte genetische Modifikation ist es dem Forschungsteam gelungen, den Stoffwechsel dieses Bakteriums so zu optimieren, dass Glukose effizient in Bernsteinsäure umgesetzt wird – und das mit sehr hoher Produktivität. „Auf dem Weg zu einem industriell relevanten Prozess muss hinsichtlich der Prozessführung noch einiges getan werden“, sagt Prof. Blombach. Jetzt konzentriert sich das Forschungsteam auf die Prozessentwicklung mit Vibrio natriegens und die Nutzbarkeit nachwachsender Rohstoffe und Abfallströme, die nicht mit der Lebensmittelindustrie konkurrieren.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Bastian Blombach
Technische Universität München
Professur für Mikrobielle Biotechnologie
Tel.: +49 (0) 9421 187-420
bastian.blombach(at)tum.de
https://www.professoren.tum.de/blombach-bastian
https://mib.cs.tum.de/

Dr. Felix Thoma
Technische Universität München
Wissenschaftler an der Professur für Mikrobielle Biotechnologie
+49 (0) 9421 187-426
felix.thoma@tum.de

Originalpublikation:

Felix Thoma, Clarissa Schulze, Carolina Gutierrez-Coto, Maurice Hädrich, Janine Huber, Christoph Gunkel, Rebecca Thoma & Bastian Blombach (2021): Metabolic engineering of Vibrio natriegens for anaerobic succinate production. In: Microbial Biotechnology. DOI: 10.1111/1751-7915.13983. URL: https://doi.org/10.1111/1751-7915.13983

Weitere Informationen:

https://journals.asm.org/doi/10.1128/AEM.01614-17 (Eugenia Hoffart, et al.: High substrate uptake rates empower Vibrio natriegens as production host for industrial biotechnology. DOI: 10.1128/AEM.01614-17.)
https://portlandpress.com/essaysbiochem/article/65/2/381/228264/Metabolic-engine… (Felix Thoma & Bastian Blombach (2021): Metabolic engineering of Vibrio natriegens. DOI: 10.1042/EBC20200135.)

http://www.tum.de

Media Contact

Dr. Katharina Baumeister Corporate Communications Center
Technische Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Kohlenstoffatom-Transfer

Chemiker der TU Dortmund veröffentlichen aktuelle Erkenntnisse in Science. Prof. Max Martin Hansmann von der Fakultät für Chemie und Chemische Biologie der TU Dortmund und sein Team haben ein neues…

Mittels KI: Genauere Prognosen für bestmögliche Therapien

In Zukunft werden personalisierte medizinische Diagnosen auf großen Datenmengen basieren. Ärzte werden viele „Biomarker“ messen, um Erkrankungen zu bestätigen oder auszuschließen. Dabei werden viele Daten gesammelt, welche aber auch Fehlinformationen…

Wertstoffe aus Abfall

EU-Projekt Circular Flooring wandelt gebrauchte PVC-Böden in weichmacherfreie Rezyklate um. Nach fünf Jahren intensiver Forschungsarbeit liefert das Circular-Flooring-Konsortium den Beweis, dass die Produktion von weichmacherfreien PVC-Rezyklaten aus alten Weichfußbodenbelägen möglich…

Partner & Förderer