Nachweis erbracht: Genmutation in Chloridkanal löst Hyperaldosteronismus aus

Kalzium-Messungen von Aldosteron-produzierenden Zellen der Nebenniere Audrey H. Soria

Mit der Arbeit haben die Forscher nicht nur einen wichtigen Krankheitsmechanismus Schritt für Schritt entschlüsselt, sondern auch Grundlagen für die weitere Erforschung des komplexen Krankheitsbildes gelegt. Die Ergebnisse sind soeben im Fachjournal „Nature Communications“ erschienen.

Unser Blutdruck wird unter anderem von Hormonen reguliert. Eine nicht zu unterschätzende Rolle spielt dabei das Steroidhormon Aldosteron. Es wird in den Nebennieren gebildet und ist an der Regulation des Wasser- und Salzhaushalts des Körpers beteiligt.

Beim Hyperaldosteronismus produzieren die Nebennieren zu viel Aldosteron, wodurch Natrium im Körper zurückgehalten und vermehrt Kalium ausgeschieden wird. Die Folge ist ein krankhaft erhöhter Blutdruck, weshalb man auch von sekundärem Bluthochdruck spricht. Auch die Nieren nehmen oft Schaden.

Bis vor kurzem wusste man wenig über die pathologischen Mechanismen der auch als Conn-Syndrom bezeichneten Erkrankung. Im Jahr 2018 konnten die Pariser Wissenschaftler um Dr. Maria-Christina Zennaro in Zusammenarbeit mit den Berliner Kollegen vom FMP und MDC sowie eine weitere Gruppe aus Deutschland und den USA um Professorin Ute Scholl vom Berlin Institute of Health (BIH) und der Charité – Universitätsmedizin Berlin erstmals nachweisen, dass bei betroffenen Patienten eine Mutation im Gen für den ClC-2-Chloridkanal vorliegt.

Sechs verschiedene Mutationen wurden bislang beschrieben (publiziert in Nature Genetics 2018). Unklar war allerdings der kausale Zusammenhang zwischen Genmutation und Überproduktion von Aldosteron. Diese Lücke haben nun die Forscher von FMP und MDC geschlossen.

Kausalität zwischen Mutation und Krankheit bewiesen

Das Team um Prof. Thomas Jentsch, der die erste Chloridkanalfamile, zu der auch ClC-2 gehört, vor fast 30 Jahren als Erster entdeckt hatte, untersuchte die beschriebenen Mutationen zunächst in vitro. Dabei fanden die Forscher, dass alle bisher bekannten, vermeintlich Hyperladosteronismus verursachenden ClC-2-Mutationen den Chloridstrom des Kanals drastisch erhöhen.

Um den Beweis zu erbringen, dass die Erhöhung des Chloridstroms von ClC-2 zu Hyperaldosteronismus führt, haben die Forscher anschließend ein Mausmodell entwickelt, das ClC-2 über eine andere, „künstliche“ Mutation aktiviert. Die genetisch veränderten Mäuse wiesen enorm erhöhte Chloridströme in den Aldosteron-absondernden Zellen auf, was unter anderem zu einem starken, pathologischen Anstieg der Aldosteron-Konzentration im Blut der Nager führte. Daraus resultierte – genau wie bei Patienten – ein krankhaft erhöhter Blutdruck und sekundär eine verringerte Renin-Aktivität, ein Hormon, das normalerweise die Aldosteronproduktion erhöht. Somit konnten die Forscher den Nachweis erbringen, dass die Mutation ursächlich an der Krankheitsentstehung beteiligt ist.

Chloridkanal stetig geöffnet

„Wir haben gesehen, dass der Kanal durch die Mutationen ständig geöffnet ist, wodurch die elektrische Spannung über die Zellmembran der Hormon-produzierenden Zelle stark verändert wird. Dadurch kommt es zu einem Einstrom von Kalzium, was wiederum zu einer Überproduktion von Aldosteron führt“, erläutert Dr. Corinna Göppner, die zusammen mit Dr. Ian Orozco Erstautorin der Studie ist und gerade über ClC-2 promoviert hat.

„Was sich aufgrund des mutierten Chloridkanals genau im Organismus abspielt, das haben wir an unserem Modell erstmals Schritt für Schritt in allen Details zeigen können“, so die Biologin weiter. „Insofern hat unsere Arbeit hervorragend die humangenetischen Befunde ergänzt und erweitert.“

Bestes Modell, um Hyperaldosteronismus zu erforschen

Das in Berlin-Buch entwickelte Maus-Modell ist das erste In-vivo-Modell, das die Krankheit mit all seinen Symptomen komplett abbildet, und gilt als das bisher beste seiner Art. Es ist also perfekt dafür geeignet, die pathologischen Mechanismen des Hyperaldosteronismus weiter zu erforschen und auch sekundäre Effekte wie Langzeitschäden zu identifizieren. Leichte Nierenschäden haben die Forscher bereits sehen können, aber sie erhoffen sich noch mehr davon: „Wir gehen im Moment davon aus, dass ein ständig geöffneter Chloridkanal auch Einfluss auf andere Organe haben könnte“, sagt Gruppenchef Prof. Thomas Jentsch. Hierüber wisse die Medizin derzeit leider noch wenig, dabei sei das Thema Langzeitfolgen für Patienten hoch relevant. „Unser Mausmodell kann definitiv bei der Aufklärung helfen, was wieder mal die Relevanz der Grundlagenforschung für die Klinik zeigt.“

Bildunterschrift (ausführlich):
Kalzium-Messungen von Aldosteron-produzierenden Zellen der Nebenniere. Sind die Zellen blau, ist die Kalzium-Konzentration in diesen Zellen niedrig. Grüne und rote Zellen haben eine erhöhte Kalzium-Konzentration, was die Produktion von Aldosteron zur Folge hat.

Kontakt Öffentlichkeitsarbeit:

Silke Oßwald
Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)
Tel. +49 30 94793-104
E-Mail osswald@fmp-berlin.de

Jana Schlütter
Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC)
Tel. +49 30 9406-2121
E-Mail jana.schluetter@mdc-berlin.de

Prof. Thomas J. Jentsch
FMP/MDC
Tel. +49 30 9406-2961
E-Mail Jentsch@fmp-berlin.de

www.fmp-berlin.de/jentsch.html 

Corinna Göppner, Ian J. Orozco, Maja B. Hoegg-Beiler, Audrey H. Soria, Christian A. Hübner, Fabio L. Fernandes-Rosa, Sheerazed Boulkroun, Maria-Christina Zennaro, Thomas J. Jentsch. Pathogenesis of hypertension in a mouse model for human CLCN2 related hyperaldosteronism, Nature Communications 2019, 15 Oct. DOI: 10.1038/s41467-019-12113-9

https://www.nature.com/articles/s41467-019-12113-9

Ansprechpartner für Medien

Dipl.-Geogr. Anja Wirsing Forschungsverbund Berlin e.V.

Weitere Informationen:

http://www.fv-berlin.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Herz-Kreislauf-Erkrankungen: Neues Computermodell verbessert Therapie

Mithilfe mathematischer Bildverarbeitung haben Wissenschafter der Forschungskooperation BioTechMed-Graz einen Weg gefunden, digitale Zwillinge von menschlichen Herzen zu erstellen. Die Methode eröffnet völlig neue Möglichkeiten in der klinischen Diagnostik. Obwohl die…

Teamarbeit im Molekül

Chemiker der Universität Jena erschließen Synergieeffekt von Gallium. Sie haben eine Verbindung hergestellt, die durch zwei Gallium-Atome in der Lage ist, die Bindung zwischen Fluor und Kohlenstoff zu spalten. Gemeinsam…

Kristallstrukturen in Super-Zeitlupe

Göttinger Physiker filmen Phasenübergang mit extrem hoher Auflösung Laserstrahlen können genutzt werden, um die Eigenschaften von Materialien gezielt zu verändern. Dieses Prinzip ermöglicht heute weitverbreitete Technologien wie die wiederbeschreibbare DVD….

Partner & Förderer

Indem Sie die Website weiterhin nutzen, stimmen Sie der Verwendung von Cookies zu. mehr Informationen

Die Cookie-Einstellungen auf dieser Website sind so eingestellt, dass sie "Cookies zulassen", um Ihnen das bestmögliche Surferlebnis zu bieten. Wenn Sie diese Website weiterhin nutzen, ohne Ihre Cookie-Einstellungen zu ändern, oder wenn Sie unten auf "Akzeptieren" klicken, erklären Sie sich damit einverstanden.

schließen