Molekularer Mangankomplex als Superphotooxidans

Anspruchsvolle Photooxidationen mithilfe von „molekularem Braunstein" und Licht
Abb./©: Katja Heinze / JGU

Forschende entwickeln neues molekulares System aus dem reichlich vorhandenen Element Mangan für Photooxidationen.

In der Photochemie wird versucht, chemische Reaktionen mithilfe von Licht anzustoßen. Eine grundlegende Herausforderung dafür ist es, die richtigen Photokatalysatoren zu finden. Bisher galten nur wenige Übergangsmetallkomplexe mit Metallionen, die auch in größeren Mengen auf der Erde vorkommen, als geeignete Kandidaten – darunter Chrom, Eisen und Kobalt. Diese Photokatalysatoren benötigen allerdings zur Anregung hochenergetisches Licht und ihre Oxidationskraft wurde noch nicht vollständig ausgeschöpft. Darüber hinaus sind in den meisten Fällen teure Edelmetalle die entscheidenden Bestandteile. Ein Team um Prof. Dr. Katja Heinze von der Johannes Gutenberg-Universität Mainz (JGU) hat nun ein neues molekulares System entwickelt, das auf dem Element Mangan beruht. Mangan ist nach Eisen und Titan das dritthäufigste Metall auf der Erde und damit weit verbreitet und sehr billig.

„Molekularer Braunstein“ zeigt ungewöhnliches Verhalten

Der lösliche Mangankomplex aus der Arbeitsgruppe von Katja Heinze ist in der Lage, sämtliches sichtbare Licht von blau bis rot, also in einer Wellenlänge von 400 bis 700 Nanometer, und Teile der nahen Infrarotstrahlung bis 850 Nanometer zu absorbieren. Der Komplex nimmt dadurch eine Farbe an, die an Braunstein erinnert – ein natürliches Mineral aus Mangandioxid. Im Gegensatz zu dem Mineral Braunstein sendet der neue „molekulare Braunstein“ Licht in der Wellenlänge von 1435 Nanometer aus, wenn er mit Licht im sichtbaren Bereich oder in der Wellenlänge von 850 Nanometer angeregt wird. „Das ist ein ungewöhnliches Verhalten für ein molekulares System, das auf Mangan in der Oxidationsstufe vier basiert“, sagt Katja Heinze.

Noch faszinierender ist die Beobachtung, dass der „molekulare Braunstein“ nach der Lichtanregung verschiedene organische Substrate oxidieren kann. Dazu gehören Moleküle mit sehr hohen Oxidationspotenzialen wie Naphthalin, Toluol oder Benzol. „Selbst sonst sehr stabile Lösungsmittel können von dem Superphotooxidans angegriffen werden, wenn es durch LED-Licht angeregt wurde“, sagt Dr. Nathan East. Er hat im Rahmen seiner Doktorarbeit in der Gruppe von Katja Heinze den neuen Komplex hergestellt und die Photolyseexperimente durchgeführt.

Ultraschnelle spektroskopische Techniken und quantenchemische Berechnungen

Mithilfe von Ultrakurzzeitspektroskopie konnte das Team zwei photoaktive Zustände beobachten: einen sehr kurzlebigen, aber extrem oxidierenden hochenergetischen Zustand und einen längerlebigen, mäßig oxidierenden niederenergetischen Zustand. Zu diesen Messungen trug maßgeblich Dr. Robert Naumann bei, der sich in der Gruppe auf zeitaufgelöste Spektroskopie spezialisiert hat. Quantenchemische Berechnungen halfen beim Verständnis der ungewöhnlichen Photoprozesse. „Diese hochspezialisierten und zeitaufwendigen Berechnungen waren nur mit der Rechenleistung der Supercomputer MOGON und Elwetritsch in Rheinland-Pfalz möglich“, ergänzt Dr. Christoph Förster, leitender Wissenschaftler in der Arbeitsgruppe, der maßgeblich an der quantenchemischen Studie beteiligt war.

Bemühungen um nachhaltige Photochemie werden fortgesetzt

In Zukunft könnte es der Forschung gelingen, neue anspruchsvolle lichtgetriebene Reaktionen mit dem reichlich vorhandenen Metall Mangan vorzunehmen. Damit würden die seltenen und teureren Ruthenium- und Iridiumverbindungen ersetzt, die heute noch am häufigsten verwendet werden. Damit würden aber auch Reaktionen und Substratklassen zugänglich, die mit den klassischen photoaktiven Verbindungen nicht umsetzbar sind. „Mit unserem eigenen, neu installierten ultraschnellen Lasersystem, der Rechenstärke von Supercomputern und der Kreativität und den Fähigkeiten unserer Doktorandinnen und Doktoranden werden wir unsere Bemühungen um eine nachhaltigere Photochemie weiter vorantreiben“, betonte Katja Heinze.

Forschungen im Rahmen des DFG-Schwerpunktprogramms „Lichtgesteuerte Reaktivität von Metallkomplexen“

Die Ergebnisse hat die Fachzeitschrift Nature Chemistry veröffentlicht. Die Forschungen werden von der Deutschen Forschungsgemeinschaft (DFG) und dem Max Planck Graduate Center mit der Johannes Gutenberg-Universität Mainz (MPGC) gefördert. Die DFG hat 2018 das Schwerpunktprogramm „Lichtgesteuerte Reaktivität von Metallkomplexen“ (SPP 2102) eingerichtet, das von Katja Heinze koordiniert wird und dessen zweite Förderperiode 2022 begonnen hat.

Bildmaterial:
https://download.uni-mainz.de/presse/09_chemie_photochemie_mangankomplex.jpg
Anspruchsvolle Photooxidationen mithilfe von „molekularem Braunstein“ und Licht
Abb./©: Katja Heinze / JGU

Weiterführende Links:
https://www.ak-heinze.chemie.uni-mainz.de/ – Arbeitskreis Prof. Dr. Katja Heinze
https://www.spp2102.uni-mainz.de/ – DFG-Schwerpunktprogramm 2102 „Lichtgesteuerte Reaktivität von Metallkomplexen“
https://susinnoscience.uni-mainz.de/ – Profilbereich SusInnoScience an der JGU
https://www.mpgc-mainz.de/ – Max Planck Graduate Center mit der Johannes Gutenberg-Universität Mainz

Wissenschaftliche Ansprechpartner:

Prof. Dr. Katja Heinze
Department Chemie
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-25886
E-Mail: katja.heinze@uni-mainz.de
https://www.ak-heinze.chemie.uni-mainz.de/biography/

Originalpublikation:

Nathan R. East et al.
Oxidative two-state photoreactivity of a manganese(IV) complex using near-infrared light
Nature Chemistry, 8. Februar 2024
DOI: 10.1038/s41557-024-01446-8
https://www.nature.com/articles/s41557-024-01446-8

https://presse.uni-mainz.de/molekularer-mangankomplex-als-superphotooxidans/

Media Contact

Petra Giegerich Kommunikation und Presse
Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Globale Erwärmung aktiviert inaktive Bakterien im Boden

Neue Erkenntnisse ermöglichen genauere Vorhersage des Kohlenstoffkreislaufs. Wärmere Böden beherbergen eine größere Vielfalt an aktiven Mikroben: Zu diesem Schluss kommen Forscher*innen des Zentrums für Mikrobiologie und Umweltsystemforschung (CeMESS) der Universität…

Neues Klimamodell

Mehr Extremregen durch Wolkenansammlungen in Tropen bei erhöhten Temperaturen. Wolkenformationen zu verstehen ist in unserem sich wandelnden Klima entscheidend, um genaue Vorhersagen über deren Auswirkungen auf Natur und Gesellschaft zu…

Kriebelmücken: Zunahme der Blutsauger in Deutschland erwartet

Forschende der Goethe-Universität und des Senckenberg Biodiversität und Klima Forschungszentrums in Frankfurt haben erstmalig die räumlichen Verbreitungsmuster von Kriebelmücken in Hessen, Nordrhein-Westfalen, Rheinland-Pfalz und Sachsen modelliert. In der im renommierten…

Partner & Förderer