Mangan statt Edelmetalle

For the first time, Manganese complexes show the types of luminescent properties and photocatalytic behavior that were primarily associated with noble metal compounds until now.
Credit: Jakob Bilger, University of Basel

Nachhaltigere Leuchtstoffe und Sonnenlicht-Nutzung…

Forschenden der Universität Basel ist ein wichtiger Schritt gelungen, um nachhaltigere Leuchtstoffe und Katalysatoren für die Umwandlung von Sonnenlicht in andere Energieformen zu produzieren. Auf der Basis von kostengünstigem Mangan entwickelten sie eine neue Verbindungsklasse mit vielversprechenden Eigenschaften, die es bis jetzt vor allem bei Edelmetallverbindungen gab.

Bildschirme von Smartphones und Katalysatoren für künstliche Fotosynthese, um mithilfe von Sonnenlicht beispielsweise Brennstoffe herzustellen, enthalten oft sehr seltene Metalle. Iridium etwa, das in organischen lichtemittierenden Dioden (OLEDs) zum Einsatz kommt, ist seltener als Gold und Platin. Auch Ruthenium, das in Solarzellen Verwendung findet, gehört zu den seltensten stabilen Elementen. Nicht nur sind diese Metalle durch ihre Seltenheit sehr teuer, sie sind in vielen Verbindungen auch toxisch.

Einem Forschungsteam um Prof. Dr. Oliver Wenger und seinem Doktoranden Patrick Herr von der Universität Basel ist es erstmals gelungen, leuchtende Mangan-Komplexe herzustellen, in denen unter Bestrahlung mit Licht die gleichen Reaktionen ablaufen wie in Ruthenium- oder Iridium-Verbindungen. Davon berichten die Forschenden in der Fachzeitschrift «Nature Chemistry». Der Vorteil von Mangan: Es kommt in der Erdkruste 900’000-mal häufiger vor als Iridium, ist deutlich weniger giftig und um ein Vielfaches kostengünstiger.

Schnelle Photochemie

Die Leuchteffizienz der neuen Mangan-Komplexe liegt gegenüber derjenigen von Iridium-Verbindungen derzeit noch zurück. Anders liegt der Fall bei den lichtgetriebenen Reaktionen, die für die künstliche Fotosynthese nötig sind. Diese Energietransfer- und Elektronenübertragungs-Reaktionen liefen mit hohen Geschwindigkeiten ab. Möglich wird dies durch die besondere Bauweise der neuen Komplexe, die bei Anregung mit Licht sofort zu einem Ladungstransfer vom Mangan in Richtung seiner unmittelbaren Verbindungspartner führt. Dieses Bauprinzip von Komplexen wird in bestimmten Typen von Solarzellen bereits genutzt, allerdings bisher meist mit Edelmetall-Verbindungen, manchmal auch mit Komplexen basierend auf dem Halbedelmetall Kupfer.

Unerwünschte Schwingungen verhindert

Durch die Aufnahme von Lichtenergie verzerren sich Komplexe aus kostengünstigen Metallen normalerweise stärker als Edelmetall-Verbindungen. Dadurch beginnen die Komplexe zu schwingen und ein Grossteil der aufgenommenen Lichtenergie geht verloren. Solche Verzerrungen und Schwingungen konnten die Forschenden unterdrücken, indem sie massgeschneiderte Molekülbestandteile in die Komplexe einbauten, um das Mangan in eine steife Umgebung zu zwingen. Dieses Bauprinzip erhöht zudem die Stabilität der resultierenden Verbindungen und macht sie gegenüber Zersetzungsprozessen robuster.

Bisher sei es noch niemandem gelungen, molekulare Komplexe mit Mangan zu schaffen, die bei Raumtemperatur in Lösung leuchten können und diese speziellen Reaktionseigenschaften hätten, so Wenger. «Patrick Herr und die beteiligten Postdoktoranden haben damit wirklich einen Durchbruch geschafft, der neue Möglichkeiten ausserhalb des Bereichs der Edelmetalle und Halbedelmetalle eröffnet.» In zukünftigen Forschungsarbeiten wollen Wenger und seine Forschungsgruppe die Leuchteigenschaften der neuen Mangan-Komplexe verbessern und sie auf geeigneten Halbleitermaterialien für Solarzellen verankern. Andere mögliche Weiterentwicklungen wären wasserlösliche Varianten der Mangan-Komplexe, die möglicherweise anstelle von Ruthenium- oder Iridium-Verbindungen in der photodynamischen Therapie zur Behandlung von Krebs eingesetzt werden könnten.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Oliver Wenger, Universität Basel, Departement Chemie, Tel. +41 61 207 11 46, E-Mail: oliver.wenger@unibas.ch

Originalpublikation:

Patrick Herr, Christoph Kerzig, Christopher B. Larsen, Daniel Häussinger, Oliver S. Wenger
Manganese(I) complexes with metal-to-ligand charge transfer luminescence and photoreactivity
Nature Chemistry (2021), doi: 10.1038/s41557-021-00744-9

http://www.unibas.ch

Media Contact

Dr. Angelika Jacobs Kommunikation & Marketing
Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer