Laserkühlung steht vor neuen Anwendungen

Zum Einfrieren geeignet? (komplette BU: (Abb.: Autoren und Hauke Westemeier)

Wärme lässt sich mikroskopisch als Bewegung von Teilchen beschreiben; beim Kühlen werden diese abgebremst. „‘Kalte Moleküle‘ versprechen eine Fülle von Anwendungen, von der Grundlagenforschung bis zur Quanteninformatik“, erklärt Mitverfasser Robert Berger, der Theoretische Chemie an der Philipps-Universität lehrt.

Bei der Laserkühlung nutzt man aus, dass Licht einen Impuls übertragen kann. Trifft ein Lichtteilchen auf ein Atom, so kann es von diesem aufgenommen werden. Durch den so genannten Dopplereffekt lässt sich erreichen, dass Atome überwiegend Lichtteilchen absorbieren, die ihnen entgegen kommen. Der dabei übertragene Bewegungsimpuls bremst die Atome ab.

„Atome in der Gasphase kann man mittlerweile nahezu perfekt unter Kontrolle bringen und fast auf den absoluten Temperaturnullpunkt abkühlen“, erläutert Berger. Bei Molekülen hingegen ist die Laserkühlung durch Dopplereffekt bislang nur gelungen, wenn sie aus zwei Atomen bestehen, etwa Strontiumfluorid (chemische Summenformel SrF) oder Yttriumoxid (YO). Denn Moleküle können sich nicht nur im Raum bewegen; vielmehr sind ihre Bestandteile auch gegeneinander beweglich.

Die Autoren zeigen, dass es entgegen bisheriger Annahmen möglich ist, das Schema der Dopplerkühlung auch auf Moleküle mit mehr als zwei Atomen zu übertragen. „Der Trick dabei ist: Man muss Moleküle mit einsamen Elektronen verwenden, die nicht zur chemischen Bindung beitragen“, führt Berger aus.

Berger und Isaev identifizierten mehr-atomige Moleküle, deren elektronische Situation derjenigen von zwei-atomigen Verbindungen gleicht, die sich durch Laser kühlen lassen. Beispiele für die gefundenen polyatomaren Moleküle sind Kalziummonohydroxid (CaOH) und Monomethylmagnesium (MgCH3). Die Autoren sind jetzt gespannt, ob sich ihre theoretischen Befunde experimentell bestätigen: „Wir hoffen natürlich, dass Experimentatoren unsere Vorschläge zeitnah aufgreifen“, sagt Berger.

Originalpublikation: Timur A. Isaev & Robert Berger: Polyatomic candidates for cooling of molecules with lasers from simple theoretical concepts, Physical Review Letters 116/2016, 063006, DOI http://dx.doi.org/10.1103/PhysRevLett.116.063006

Weitere Informationen:
Ansprechpartner: Professor Dr. Robert Berger,
Fachbereich Chemie
Tel.: 06421 28-25687
E-Mail: robert.berger@uni-marburg.de

Ansprechpartner für Medien

Johannes Scholten idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-marburg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Optisch aktive Defekte verbessern Kohlenstoffnanoröhrchen

Heidelberger Wissenschaftlern gelingt Defekt-Kontrolle durch neuen Reaktionsweg. Mit bewusst erzeugten strukturellen „Fehlstellen“ oder Defekten lassen sich die Eigenschaften von kohlenstoffbasierten Nanomaterialien verändern und verbessern. Dabei stellt es jedoch eine besondere…

Spritzguss von Glas

Freiburger Forschenden gelingt schnelle, kostengünstige und umweltfreundliche Materialfertigung. Von Hightech-Produkten im Bereich Optik, Telekommunikation, Chemie und Medizin bis hin zu alltäglichen Gegenständen wie Flaschen und Fenstern – Glas ist allgegenwärtig….

Radikalischer Angriff auf lebende Zellen

Durch Mikrofluidik gezielt die Oberfläche von Zellen mit freien Radikalen stimulieren. Lassen sich kleine, abgegrenzte Bereiche auf der Zellmembran chemisch manipulieren? Mit einer raffinierten mikrofluidischen Sonde haben Wissenschaftler:innen Zellen gezielt…

Partner & Förderer