Kontakte zwischen Nervenzellen: Signalweitergabe ja oder nein?

Verteilung des Proteins Mover (rot) innerhalb einer Riesensynapse (grün) des Hörsystems, die als Modell zur Untersuchung der synaptischen Kommunikation eingesetzt wird. Dr. Christoph Körber

Gäben die geschätzt 100 Milliarden Nervenzellen des Gehirns sämtliche eingehenden Signale eins zu eins weiter, wäre keine Informationsverarbeitung mehr möglich und auch jede andere Hirnfunktion käme zum Erliegen.

Wissenschaftler des Instituts für Anatomie und Zellbiologie am Universitätsklinikum Heidelberg haben nun ein Protein in Hirnzellen ausfindig gemacht, das die Signalweitergabe reguliert und damit filtert. Je mehr von diesem Protein „Mover“ Nervenzellen an den Kontaktstellen (Synapsen) zu ihren Nachbarn bilden, desto seltener werden Signale weitergeleitet.

Unter welchen Umständen dieser Filtermechanismus zum Einsatz kommt und wie er sich auf die Hirnfunktion auswirkt, muss allerdings noch erforscht werden. Die Arbeit ist nun im renommierten Fachjournal „Neuron“ erschienen.

Mover wurde am Heidelberger Institut für Anatomie und Zellbiologie von Professor Dr. Thomas Dresbach entdeckt, einer der Seniorautoren des Artikels, der inzwischen an der Universität Göttingen tätig ist.

Das Protein scheint für die Gehirnaktivität nicht essentiell zu sein: „Mover wurde bisher nur bei Wirbeltieren gefunden und auch nur in bestimmten Nervenzellen. Vermutlich ist es eine Anpassung an ein komplexeres Lebensumfeld und aufwändigere Verarbeitungsprozesse im Gehirn.

Es bewirkt wahrscheinlich eine Art Fein-Tuning der vorgeschalteten Regulationsmechanismen“, erklärt Professor Dr. Thomas Kuner, ebenfalls Seniorautor des Artikels und Leiter der Abteilung Funktionelle Anatomie am Institut für Anatomie und Zellbiologie. Vorgeschaltete Mechanismen sind z.B. die Hemmung bestimmter Nervenzellen durch ihre Nachbarn oder auch die Signalverstärkung durch Weitergabe eines Signals an möglichst viele andere Nervenzellen.

Noch unklar, bei welchen Hirnfunktionen „Mover“ eine Rolle spielt

Mover wird dort deponiert, wo Nervenzellen Kontakte zu anderen Zellen aufnehmen. Es verringert die Wahrscheinlichkeit, dass die Zelle an diesen Kontaktstellen Botenstoffe, sogenannten Neurotransmitter, ausschüttet, hemmt die Zelle selbst allerdings nicht. Sie bleibt erregbar, einzelne Signale werden weiterhin übertragen.

Hirnzellen von Ratten, die aufgrund einer genetischer Veränderung Mover nur vermindert bilden können, geben deutlich mehr Signale weiter, dafür ermüden die Zellen aber auch schneller. „Bei Nervenzellen mit besonders vielen Kontaktstellen könnte Mover daher auch ein Schutz vor schneller Ermüdung sein. Denn dann können die Zellen keine Signale mehr weitergeben. Also lieber seltener, aber dafür beständig“, vermutet Kuner.

Unklar ist noch, was die einzelnen Synapsen dazu veranlasst, mehr oder weniger Mover zu bilden und in Folge mehr oder weniger Signale durch zu lassen. „Momentan sieht es danach aus, als ob die von Mover beeinflusste Signalweitergabe rein zufällig abläuft. Was es damit auf sich hat, wollen wir als nächstes untersuchen“, sagt der Neurowissenschaftler.

Literatur:
Körber, C., Horstmann, H., Venkatamarani, V., Herrmannsdörfer, Kremer, T., Kaiser, M., Schwenger, D.B., Ahmed, S., Dean, C., Dresbach, T. & Kuner, T. (2015). Modulation of Presynaptic Release Probability by the Vertebrate-Specific Protein Mover. Neuron 87, in Press. DOI: http://dx.doi.org/10.1016/j.neuron.2015.07.001

Kontakt:
Prof. Dr. Thomas Kuner
Abteilung Funktionelle Neuroanatomie
Institut für Anatomie und Zellbiologie
Universität Heidelberg
Tel.: 06221-548681 (Sekr.)
E-Mail: kuner@uni-heidelberg.de

Universitätsklinikum und Medizinische Fakultät Heidelberg
Krankenversorgung, Forschung und Lehre von internationalem Rang

Das Universitätsklinikum Heidelberg ist eines der bedeutendsten medizinischen Zentren in Deutschland; die Medizinische Fakultät der Universität Heidelberg zählt zu den international renommierten biomedizinischen Forschungseinrichtungen in Europa. Gemeinsames Ziel ist die Entwicklung innovativer Diagnostik und Therapien sowie ihre rasche Umsetzung für den Patienten. Klinikum und Fakultät beschäftigen rund 12.600 Mitarbeiterinnen und Mitarbeiter und engagieren sich in Ausbildung und Qualifizierung. In mehr als 50 klinischen Fachabteilungen mit ca. 1.900 Betten werden jährlich rund 66.000 Patienten voll- bzw. teilstationär und mehr als 1.000.000 mal Patienten ambulant behandelt. Das Heidelberger Curriculum Medicinale (HeiCuMed) steht an der Spitze der medizinischen Ausbildungsgänge in Deutschland. Derzeit studieren ca. 3.500 angehende Ärztinnen und Ärzte in Heidelberg.

http://www.ana.uni-heidelberg.de/164.html Institut für Anatomie und Zellbiologie

Media Contact

Julia Bird idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Effizientes Ventil für Elektronenspins

Forscher der Universität Basel haben zusammen mit Kolleginnen aus Pisa ein neues Konzept entwickelt, das den Eigendrehimpuls (Spin) von Elektronen verwendet, um elektrischen Strom zu schalten. Neben der Grundlagenforschung könnten…

© Rodewald/DKFZ

Neue Technologie gibt Einblicke in die Entwicklung von Immunzellen

Aus Blutstammzellen geht das gesamte Spektrum unserer Blut- und Immunzellen hervor. Doch welche Gene beeinflussen die Entwicklung hin zu den verschiedenen Zelltypen? Wissenschaftler des Deutschen Krebsforschungszentrums (DKFZ) stellen nun eine…

24.000 Kilometer in der Sekunde: Bislang schnellster Stern von Kölner Physikern entdeckt

Erforschung von Hochgeschwindigkeitssternen durch Teleskop in Südamerika / Kölscher „4711“-Stern braucht nur 7,6 Jahre um Schwarzes Loch zu umkreisen Dr. Florian Peißker und Professor Dr. Andreas Eckart vom I. Physikalischen…