Katastrophenalarm in der Zelle

Wird eine Zelle lebensfeindlichen Bedingungen ausgesetzt, koordiniert das Protein HSF1 (grün markiert) ein Notfallprogramm, um die Zelle vor permanentem Schaden zu schützen. Foto: Christian Loew / Copyright: MPI für Biochemie

Ist ein Organismus lebensfeindlichen Einflüssen ausgesetzt, schlägt er Alarm und ein zelluläres Notfallprogramm, die Hitzeschockantwort, wird gestartet. Der Name „Hitzeschockantwort“ ist dabei irreführend.

Anfang der 60er Jahre wurde diese Form der Stressantwort das erste Mal beobachtet. Wissenschaftler setzten Fruchtfliegen erhöhten Temperaturen aus und beobachteten ein komplexes Notfallprogramm zum Schutz der einzelnen Zellen und damit des Organismus. Heute wissen die Forscher, dass dieses Programm auch bei anderen Gefährdungen wie Strahlung oder giftigen Substanzen ausgelöst wird. Der Begriff jedoch blieb.

Während der Hitzeschockantwort werden verschiedene Stressproteine produziert, die verhindern sollen, dass der Organismus dauerhaften Schaden erleidet. „Wie bei einem Katastrophenalarm werden Probleme und Schäden erkannt, Gegenmaßnahmen eingeleitet und koordiniert, um so den Ursprungszustand möglichst bald wiederherzustellen“, beschreibt Loew die Abläufe in der Zelle.

Die Max-Planck-Wissenschaftler haben in einer umfangreichen Analyse 15.000 Proteine und ihre Rolle in der Hitzeschockantwort untersucht. Dabei stellten sie fest, dass die Helfer in verschieden Aufgaben und Katastrophengebiete eingeteilt werden. So gibt es beispielsweise Proteine, die im Zellkern überprüfen, ob die Erbsubstanz DNA noch intakt ist.

Die zentrale Steuerung des Katastrophenmanagements übernimmt das Protein HSF1 (engl. heat shock transkription factor). Wird es aktiviert, ruft es eine Vielzahl von anderen Proteinen auf den Plan, um bei der Beseitigung der Schäden zu helfen. Die Forscher konnten zwei Wege aufzeigen, wie diese Steuerzentrale selbst reguliert wird. Ist die Katastrophe überstanden, wird HSF1 durch die Müllabfuhr der Zelle, das Proteasom, abgebaut. Solange jedoch noch Schäden beseitigt werden müssen, verhindert ein anderes Protein (Acetyltransferase EP300) diesen Abbau. 

Das Verständnis der Hitzeschockantwort könnte auch für die Therapie von neurodegenerativen Krankheiten wie Alzheimer oder Parkinson wichtig sein, hoffen die Forscher in Martinsried. Bei diesen Krankheiten ist die zelluläre Qualitätskontrolle durch die massiven Zellschäden überfordert. Nervenzellen sterben ab und können ihre Aufgaben im Gehirn nicht mehr übernehmen. „Eine gezielte Aktivierung der Hitzeschockantwort könnte eventuell die für diese Krankheiten typischen Zellschäden reduzieren“, erläutert Loew.

Originalpublikation:
S. Raychaudhuri, C. Loew, R. Körner, S. Pinkert, M. Theis, M. Hayer-Hartl, F. Buchholz and F. U. Hartl: Interplay of Acetyltransferase EP300 and the Proteasome System in Regulating Heat Shock Transcription Factor 1. Cell, February 27, 2014.
DOI: 10.1016/j.cell.2014.01.055

Kontakt:
Prof. Dr. F.-Ulrich Hartl
Zelluläre Biochemie
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: uhartl@biochem.mpg.de
http://www.biochem.mpg.de/hartl

Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de
http://www.biochem.mpg.de

http://www.biochem.mpg.de/news/pressroom

– Weitere Pressemitteilung des MPI für Biochemie

http://www.biochem.mpg.de/hartl

– Webseite der Forschungsabteilung „Zelluläre Biochemie“ (F.-Ulrich Hartl)

Media Contact

Anja Konschak Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer