Hochelastische Superkondensatoren

Streck- und komprimierbare Superkondensatoren. (c) Wiley-VCH
Elastische Elektroniksysteme benötigen eine ebenso elastische Stromquelle. Chinesische Wissenschaftler stellen jetzt in der Zeitschrift Angewandte Chemie ein Polyelektrolytmaterial für einen außerordentlich dehnbaren und komprimierbaren Superkondensator vor.
Ausgestattet mit Papierelektroden aus einem Kohlenstoffnanoröhren-Verbundmaterial, kann dieser Superkondensator auf das mehr als Zehnfache seiner Länge gestreckt und bis auf die Hälfte seiner Dicke komprimiert werden. Dabei gewinnt er noch an Kapazität.
Superkondensatoren füllen die Lücke zwischen (wiederaufladbaren) Batterien und normalen Kondensatoren aus. Während Batterien vor allem als Energiespeicher und -Quelle genutzt werden, dienen Kondensatoren zur raschen Ladung und Entladung, können aber nicht viel Energie speichern.
Superkondensatoren besitzen nun zusätzlich zu einer großen Lade- und Entladekapazität eine überaus hohe Energie- und Leistungsdichte. Sie werden zum Beispiel bei der Rekuperation in elektrischen Fahrzeugen oder als Speicherpuffer in Windrädern und – immer mehr – in elektronischen Kleingeräten wie Laptops oder Digitalkameras verwendet.
Um sie für Zukunftsthemen wie intelligente Kleidung oder elektronisches Papier fit zu machen, arbeiten Chunyi Zhi von der City University of Hong Kong und Kollegen an immer stärker mechanisch beanspruchbaren Superkondensatoren. Dafür haben sie jetzt einen Polyelektrolyten für Superkondensatoren entwickelt, der sich auf das Zehnfache seiner Länge dehnen und auf die Hälfte seiner Dicke zusammenpressen lässt, ohne Spuren von Beanspruchung zu zeigen.
Als Elektrolyt in Superkondensatoren wird häufig ein Gel aus Polyvinylalkohol verwendet. Eine gewisse Biegsamkeit oder Dehnbarkeit erreicht man durch elastische Zusatzstoffe wie Kautschuk oder bestimmte Fasern. Der Elektrolyt von Zhi ist anders aufgebaut: Ein Polyacrylamid(PAM)-Hydrogel wird durch Vinyl-funktionalisierte Nanopartikeln aus Siliciumdioxid (VSPNs) verstärkt.
Die Vinyl-Siliciumdioxid-Nanopartikel vernetzen die polymeren Komponenten im Gel und machen es stark dehnbar, während der Polyelektrolyt Wasser und Ionen aufnimmt und somit für die Leitfähigkeit sorgt. „Der VSNP-Quervernetzer dient als Puffer, um die Spannungsenergie abzuleiten und das PAM-Netzwerk zu homogenisieren. Durch diese Synergie erreicht unser Superkondensator eine enorme intrinsische Dehnbarkeit und Komprimierbarkeit”, erklärt Zhi.
Einen funktionsfähigen Superkondensator bauten die Forscher durch Auflegen von zwei identischen Papierelektroden aus einem Kohlenstoffnanoröhren-Verbundmaterial auf jede Seite des maximal gedehnten Polyelektrolytfilms. Lässt die Spannung nach, entsteht eine ziehharmonikaartige Struktur mit überraschender Elektrochemie:
„Die elektrochemische Leistung steigt an, wenn der Spannungsstress größer wird”, bemerkten die Wissenschaftler. Und der Spannungsstress war gewaltig: Bis zu einer Dehnung auf 1000 Prozent und einer Kompression auf die Hälfte seiner Dicke überstand der Superkondensator unbeschadet, und das bei gleicher oder sogar höherer Kapazität. Für künftige Entwicklungen von in Stoffen und Papier integrierter Elektronik dürfte daher dieser Polyelektrolyt höchst interessant sein.
Angewandte Chemie: Presseinfo 28/2017
Autor: Chunyi Zhi, City University of Hong Kong, mailto:cy.zhi@cityu.edu.hk
Link zum Originalbeitrag: https://doi.org/10.1002/ange.201705212
Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge

Sehzentren im Gehirn – genetisch auf Action getrimmt
Im Gehirn wandeln spezialisierte Zellnetzwerke von der Netzhaut kommende Reize in angepasste Verhaltensweisen um. Doch was passiert, wenn diese Reize fehlen? Ein Team am Max-Planck-Institut für biologische Intelligenz untersuchte eine…

Molekulare Mechanismen von Pilzinfektionen aufgeklärt
Pilzinfektionen bedrohen Menschen, Tiere und auch Pflanzen, mit teilweise ernsten Folgen. Ein Forschungsteam der Heinrich-Heine-Universität Düsseldorf (HHU) hat zusammen mit Kolleginnen und Kollegen aus Frankfurt/Main und Aachen einen wichtigen Mechanismus…

CO2-Speicherung im Ozean
Wie Spurenelemente die CO2-Speicherung im Ozean verändern. Eisen und Mangan beeinflussen das Algenwachstum und damit auch den Kohlenstoff-Transport im Südpolarmeer. Der richtige Mix von Spurenelementen ist entscheidend für eine gesunde…