Frischluft im Sand: Was Bakterien in der Nordsee antreibt

LanceALot auf dem Weg zu einem seiner Einsätze. Das Gerät erlaubt die gleichzeitige Messung der Strömungsgeschwindigkeit, des Sauerstoffs im Boden und der Bodenform. Max-Planck-Institut für Marine Mikrobiologie

Fast fünf Millionen Deutsche machen alljährlich Urlaub an der Nordsee. Sie erholen sich am Strand oder genießen das Naturschauspiel des Wattenmeers. Doch die Nordsee ist mehr als nur eines der beliebtesten deutschen Reiseziele. Sie ist auch ein faszinierendes Ökosystem, das für unser Leben höchst bedeutsam ist und immer noch voller Überraschungen steckt.

Soeren Ahmerkamp und David Probandt vom Bremer Max-Planck-Institut verbringen deshalb viel Zeit an der Nordsee. Die beiden Forscher beschäftigen sich mit dem Lebensraum Sand – oder, wissenschaftlich gesprochen, mit permeablen Küstensedimenten. Nun beschreiben sie in zwei neuen Veröffentlichungen, wie Sauerstoff den Sand durchdringt und was das für die dort lebende Bakteriengemeinschaft bedeutet.

„Sande bedecken große Teile des Meeresbodens entlang der Kontinentalränder“, erklärt Soeren Ahmerkamp aus der Abteilung Biogeochemie am MPI Bremen. „Sie sind viel durchlässiger für das Meerwasser als der meist schlammige Boden der Tiefsee.“

Wenn Meerwasser durch den Sand strömt, gelangt auch Sauerstoff in den Boden und regt die dortigen Mikroorganismen an. Je mehr Sauerstoff in den Boden gelangt, desto aktiver sind die Mikroorganismen und können beispielsweise große Mengen Kohlenstoff oder Stickstoff umsetzen. „Das ist besonders wichtig angesichts dessen, dass durch die Flüsse große Mengen an Stickstoff und anderen Nährstoffen in die Nordsee gelangen“, so David Probandt aus der Abteilung Molekulare Ökologie.

„Bisher wurde die Wechselwirkung von Sanden und dem Meerwasser meist nur im Labor untersucht“, fährt Ahmerkamp fort. „Wir haben sie uns vor Ort angesehen, unter realen Bedingungen, um mehr über ihre tatsächliche Bedeutung aussagen zu können.“

Gemeinsam mit Kollegen vom MPI Bremen entwickelte Ahmerkamp ein Gerät namens LanceALot, das gleichzeitig die Strömungsgeschwindigkeit, die Form des Bodens und den Sauerstoff im Sand messen kann. An 16 verschiedenen Stellen in der Nordsee wurde LanceALot eingesetzt, um den Zusammenhang zwischen diesen Faktoren zu untersuchen.

Eine bedeutende Rolle spielen demnach Rippel – die typischen, an ein Wellblech erinnernden Sandwellen am Meeresboden. „Durch die ständigen Veränderungen der Rippel und die wechselnden Gezeitenströme ist der Sand ein sehr dynamischer Lebensraum, der sich ständig verändert. Sauerstoff ist mal mehr oder weniger vorhanden, mal dringt er mehrere Zentimeter tief in den Sand ein und mal bleibt er an der Oberfläche – daran müssen sich die Mikroorganismen im Sand anpassen“, sagt Ahmerkamp.

Den bakteriellen Bewohnern des Sandes wird also viel abverlangt. „Auf jedem Sandkorn sitzen zehntausende bis hunderttausende Bakterien. Die können natürlich einiges bewirken“, meint auch David Probandt. Da diese Bakterien beispielsweise Kohlenstoff und auch Stickstoff aus dem Meerwasser verarbeiten, wirken die Sande wie riesige, reinigende Filter. Vieles von dem, was das Meerwasser in den Boden spült, kommt nicht wieder heraus.

Bislang ist nur wenig über die bakteriellen Bodenbewohner entlang der Küsten bekannt. Probandt und seine Kollegen haben sie nun an verschiedenen Stellen der Nordsee mit modernen molekularen Methoden und Fluoreszenzmikroskopie erforscht. „Schon in den obersten fünf Millimetern des Meeresbodens finden wir ganz andere und vielfältigere Bakterien als im Meerwasser selbst“, so Probandt. „Wer wo wohnt, hängt vor allem von der Zusammensetzung des Meeresbodens ab. Je durchlässiger der Boden für einströmendes Meerwasser ist, desto mehr aerobe Bakterien treten auf.“ Die Arbeit zeigte ebenfalls, dass eine Bakteriengruppe, die sogenannten Planctomyceten, besonders häufig in Küstensedimenten vorkommen. Planctomyceten unterscheiden sich von anderen Bakterien durch ihren komplexen Lebenszyklus und stellen viele verschiedene Naturstoffe her. Sie könnten daher auch besonders gut an die besonderen Bedingungen in Oberflächensedimenten angepasst sein. „Ob dies der Fall ist, werden wir in zukünftigen Arbeiten betrachten“ betont Probandt.

Der Meeresboden entlang der Küsten ist besonders stark von menschlichem Einfluss – von der wirtschaftlichen Nutzung über Nährstoffeintrag durch die Flüsse bis hin zum Klimawandel – betroffen. Die neuen Studien zeigen, wie komplex dieser Lebensraum ist und welche bedeutende Rolle seine Bewohner für unser Leben spielen. „Durch die Zusammenarbeit von Wissenschaftlern verschiedener Fachrichtungen konnten wir viele neue Erkenntnisse über dieses dynamische Ökosystem erlangen“, betont Probandt.

„Es gibt noch sehr viel zu erforschen in der Nordsee und den anderen Küstenmeeren“, schließt Ahmerkamp. „Die Vorgänge und mögliche Veränderungen in diesem Ökosystem betreffen uns alle.“

Originalveröffentlichungen

S. Ahmerkamp, C. Winter, K. Krämer, D. de Beer, F. Janssen, J. Friedrichs, M. Kuypers und M. Holtappels (2017): Regulation of benthic oxygen fluxes in permeable sediments of the coastal ocean. Limnology and Oceanography.
DOI: 10.1002/lno.10544 (http://onlinelibrary.wiley.com/doi/10.1002/lno.10544/full)
Die Publikation ist im Rahmen des MPI-marum Cross-Cutting-Project 5 (CCP5)“Organic-matter remineralization and nutrient turnover in permeable sandy sediments“ unter der Leitung von Moritz Holtappels entstanden.

D. Probandt,. K. Knittel, H. E. Tegetmeyer, S. Ahmerkamp, M. Holtappels und R. Amann (2017): Permeability shapes bacterial communities in sublittoral surface sediments. Environmental Microbiology 19(4): 1584-1599.
DOI: 10.1111/1462-2920.13676 http://onlinelibrary.wiley.com/doi/10.1111/1462-2920.13676/epdf


Rückfragen bitte an

Dr. Soeren Ahmerkamp (https://www.mpi-bremen.de/Dr.-soeren-ahmerkamp.html)
David Probandt (https://www.mpi-bremen.de/David-Probandt.html)

oder an die Pressestelle

Dr. Fanni Aspetsberger
Dr. Manfred Schlösser
Telefon: +49 421 2028 704
E-Mail: presse(at)mpi-bremen.de

Media Contact

Dr. Fanni Aspetsberger Max-Planck-Institut für marine Mikrobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neuartige Beschichtung gegen Eis

Das Material verzögert die Bildung von Eiskristallen und verringert die Adhäsion von Eisschichten. Dank einer innovativen Fertigungsmethode ist die Beschichtung sehr robust und haftet auf zahlreichen Oberflächen. Eisabweisende Beschichtungen gibt…

Bioabbaubare Materialien – In Bier verpackt

Empa-Forschende haben aus einem Abfallprodukt der Bierbrauerei Nanocellulose gewonnen und diese zu einem Aerogel verarbeitet. Der hochwertige Werkstoff könnte in Lebensmittelverpackungen zum Einsatz kommen. Am Anfang war die Maische. Das…

RISEnergy: Innovationen für die Klimaneutralität beschleunigen

Die EU strebt bis 2050 Klimaneutralität an. Das Projekt RISEnergy (steht für: Research Infrastructure Services for Renewable Energy) soll auf dem Weg dorthin die Entwicklung von Innovationen für erneuerbare Energien…

Partner & Förderer