Forschungsteam entdeckt Mechanismus, der die Zellfunktion nach Genomschäden wiederherstellt

Das Bild zeigt eine konfokale Mikroskopie von C. elegans nach UV-Bestrahlung. Es treten vermehrt Doppelbesetzungen der Histone auf: H3K4me2 in grün. Dreifachbesetzung (H3K4me3) sind rot gefärbt und Zellkerne sind blau markiert. Bildnachweis: Dr. Siyao Wang

Forschende der Universität zu Köln haben entschlüsselt, wie die Entwicklung und Langlebigkeit von Zellen nach Beschädigung durch UV-Strahlung gefördert wird / Therapie gegen vorzeitiges Altern rückt näher.

Ein Kölner Forschungsteam hat herausgefunden, dass eine Veränderung an der DNA-Struktur, dem Chromatin, eine entscheidende Rolle in der Erholungsphase nach einer Beschädigung der DNA spielt. Der Schlüssel ist eine Doppelbesetzung durch zwei Methylgruppen am DNA-Verpackungsprotein Histon H3 (H3K4me2).

Dies konnten Wissenschaftlerinnen und Wissenschaftler unter der Leitung von Prof. Björn Schumacher des Exzellenzclusters für Alternsforschung CECAD, des Zentrums für Molekulare Medizin Köln (ZMMK) und des Instituts für Genomstabilität in Alterung und Erkrankung der Universität zu Köln zeigen. Durch die spezifische Veränderung können nach der Beschädigung Gene wieder aktiviert und Proteine hergestellt werden: Die Zellen gewinnen ihr Gleichgewicht zurück, der Organismus erholt sich. Die schützende Rolle von H3K4me2 wurde in Experimenten mit dem Fadenwurm Caenorhabditis elegans identifiziert.

Die Studie wurde nun vom Fachjournal Nature Structural & Molecular Biology veröffentlicht.

Das Genom in jeder menschlichen Zelle wird tagtäglich beschädigt, in der Haut etwa von UV-Strahlung der Sonne. Schäden in der DNA verursachen Krankheiten wie Krebs, beeinflussen die Entwicklung und beschleunigen die Alterung. Angeborene Fehlfunktionen in der DNA Reparatur können zu extrem beschleunigter Alterung bei seltenen Erbkrankheiten führen. Daher sind Erhaltungs- und Wiederaufbauprozesse besonders wichtig, um die Entwicklung zu gewährleisten und die Gewebefunktion zu erhalten. DNA, die wie auf Kabeltrommeln auf den Verpackungsproteinen – den Histonen – aufgerollt ist, wird durch Methylgruppen reguliert. Verschiedene Proteine sind dafür verantwortlich, Methylgruppen auf Histone zu setzen oder diese zu entfernen. Die Anzahl der Gruppen auf den Verpackungsproteinen hat Auswirkungen auf die Aktivität von Genen und somit die Proteinproduktion der Zelle.

Das Forschungsteam hat in Experimenten beim Fadenwurm gezeigt, dass nach der Reparatur beschädigter DNA vermehrt zwei Methylgruppen auf den DNA-Paketen zu finden waren. Weiterhin fanden Sie heraus, dass Fehler im Setzen dieser zwei Methylgruppen auf die Histone (H3K4me2) den schadensinduzierten Alterungsprozess beschleunigen, während eine erhöhte Positionierung dieser Histonveränderung die Lebensspanne nach DNA Schäden verlängert. Durch die Kontrolle der Proteine, die diese Methylgruppe entweder aufsetzten oder entfernen, ließ sich somit die Widerstandsfähigkeit gegenüber DNA Beschädigungen und damit der Alterungsprozess der Tiere beeinflussen.

Die weitere Analyse der Rolle dieser zwei Methylgruppen zeigte: die Anreicherung von H3K4 nach Genomschäden mit zwei Methylgruppen unterstützt die Zellen bei der Wiederherstellung des Gleichgewichts nach DNA Beschädigungen.

„Dadurch, dass wir nun die genauen Veränderungen im Chromatin kennen, können wir diese nutzen, um zielgenau die Folgen von Beschädigungen in der DNA zu begrenzen“, so Schumacher. „Ich hoffe, dass durch diese Erkenntnisse Therapien für Erbkrankheiten entwickelt werden können, die durch Entwicklungsstörungen und vorzeitiges Altern geprägt sind. Aufgrund der grundsätzlichen Bedeutung von DNA Schäden im Alterungsprozess könnten solche Ansätze auch dem normalen Altern entgegenwirken und altersbedingte Krankheiten vorbeugen.“

Wissenschaftliche Ansprechpartner:

Inhaltlicher Kontakt:
Prof. Dr. Björn Schumacher
Institut für Genomstabilität in Alterung und Erkrankung der Universität zu Köln
+49 221 478 84202
bjoern.schumacher@uni-koeln.de

Presse und Kommunikation:
Dr. Anna Euteneuer
+49 221 478 84043
anna.euteneuer@uni-koeln.de

Originalpublikation:

S. Wang, D. Meyer & B. Schumacher. H3K4me2 regulates the recovery of protein biosynthesis and homeostasis following DNA damage. (2020) Nature Structural & Molecular Biology. doi: 10.1038/s41594-020-00513-1

Weitere Informationen:

https://www.nature.com/articles/s41594-020-00513-1

https://portal.uni-koeln.de/universitaet/aktuell/presseinformationen/detail/forschungsteam-entdeckt-mechanismus-der-die-zellfunktion-nach-genomschaeden-wiederherstellt

Media Contact

Dr. Patrick Honecker Presse und Kommunikation
Universität zu Köln

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Klimawandel verursacht Artensterben im Schwarzwald

Schon heute hinterlässt der Klimawandel in den Mooren im Schwarzwald seine Spuren. Durch steigende Temperaturen und längere Trockenperioden sind dort in den vergangenen 40 Jahren bereits zwei typische Pflanzenarten ausgestorben….

Experiment bildet Elektronentransfer im Molekül ab

Wissenschaftlerinnen und Wissenschaftler der Friedrich-Schiller-Universität Jena entwickeln in dem neuen Projekt „Multiskalen Pump-Pump-Probe-Spektroskopie zur Charakterisierung mehrschrittiger Elektronentransferkaskaden“ (kurz: „Multiscale P3S“) eine bisher einzigartige Untersuchungsmethode, um genau unter die Lupe zu…

Leistungstest für neuronale Schnittstellen

Freiburger Forschende entwickeln Richtlinie zur einheitlichen Analyse von Elektroden Wie sollen Wissenschaftlerinnen und Wissenschaftler die Leistungsfähigkeit neuronaler Elektroden messen und definieren, wenn es keinen einheitlichen Standard gibt? Die Freiburger Mikrosystemtechnikerin…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close