Forscher der Jacobs University entwickeln Bewegungsmelder für den Membranverkehr

Die Bewegung eines Peptides (roter Strang) durch einen Membrankanal führt zur Fluoreszenz des Farbstoffs (rechts)<br><br>Copyright: Jacobs University<br>

Trotz ihrer hohen medizinischen Relevanz – der Membranverkehr entscheidet über Leben und Tod von Zellen und Organismen – sind diese Fragen nur schwer zu beantworten.

Forscher der Jacobs University haben jetzt molekulare Bewegungsmelder entwickelt, die den Molekülverkehr durch die Membran in Echtzeit messen können. Eine Studie über die neue Methode, die in der Grundlagenforschung und in der Entwicklung neuer Medikamente eingesetzt werden kann, wurde jetzt im führenden Journal ‚Angewandte Chemie‘ veröffentlicht und von den Redakteuren als ‚Hot Paper‘ ausgewählt.

Bisherige Methoden in der Membranforschung liefern nur begrenzte Informationen über den Weg eines Moleküls in die Zelle, sie sind sehr aufwendig, teuer oder erfordern die Arbeit mit radioaktiven Markierungen.

Garima Ghale, Doktorandin aus der Arbeitsgruppe von Werner Nau, Professor für Chemie an der Jacobs University, hat jetzt eine neue, kostengünstige Methode entwickelt, mit der sich der Molekülverkehr in Echtzeit messen lässt. Im Zentrum der neuen Messtechnik steht ein spezieller Farbstoff, der seine Fluoreszenz in dem Moment ändert, in dem ein Zielmolekül, beispielsweise ein neuer Arzneistoff oder ein Toxin, die Membran passiert.

Der Farbstoff, der in einer supramolekularen Verbindung vorliegt, also eingekapselt in ein großes makrozyklisches Molekül, fungiert dabei als hochempfindlicher molekularer Bewegungsmelder. Da der Membranverkehr mittels Fluoreszenz detektiert wird, eine in vielen Laboren angewandte Methode, können alle Bewegungen in Echtzeit verfolgt werden. Dabei hat sich gezeigt, dass Moleküle die Membran extrem schnell durchqueren können.

In seiner ersten Studie hat das Forscherteam der Jacobs University, dem auch Mathias Winterhalter, Professor für Biophysik, und Maik Jacob, Postdoc in Chemie, angehören, die neue Methode bereits auf einige interessante Moleküle angewandt und beispielsweise Neurotransmitter, Anti-Alzheimer-Medikamente und eine neue Klasse antimikrobieller Peptide untersucht.

„Mit unseren neuen Bewegungsmeldern können wir bestimmen, ob eine toxische Substanz durch einen spezifischen Membrankanal gelangen kann“, erklärt Dr. Jacob. „Immer dann, wenn eine solche Substanz nur in Bakterienzellen, nicht aber in menschliche Zellen eindringen kann, hat man möglicherweise ein neues Antibiotikum entdeckt.“

So haben die Wissenschaftler auch ein als Protamin bekanntes Protein untersucht, dessen eigentliche Funktion es ist, Erbinformation im Sperma dicht zu packen. Auch hier haben sich Hinweise auf eine antimikrobielle Wirksamkeit ergeben. Tatsächlich haben die neuen Bewegungsmelder signalisiert, dass Protamin in Sekundenschnelle durch Modelle von Bakterienmembranen gelangen kann.

Die neue entwickelte Methode kann in der Grundlagenforschung angewandt werden, wenn beispielsweise die Geschwindigkeit bestimmt werden soll, mit der verschiedene Substanzen die Membran durchqueren und die Zelle erreichen. Zudem kann sie in der pharmazeutischen Industrie bei der Suche und Charakterisierung neuer Wirkstoffe Anwendung finden.

Studie: Chemosensorische Ensembles zur Echtzeitdetektion von Transportprozessen durch Biomembranen

Autoren: Garima Ghale, Adrienne G. Lanctôt, Hannah T. Kreissl, Maik H. Jacob, Helge Weingart, Mathias Winterhalter, Werner M. Nau

Fragen zu der Studie beantwortet:
Werner Nau | Professor für Chemie
Email: w.nau@jacobs-university.de | Tel.: +49 421 200-3233

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Die Zell-Eisenbahn – Computersimulationen erklären Zellbewegungen

Man blickt unter das Mikroskop: Eine Gruppe von Zellen bewegt sich langsam voran, hintereinander wie ein Zug über die Gleise. Dabei navigieren die Zellen durch komplexe Umgebungen. Wie sie das…

Wie Künstliche Intelligenz Maschinenstillstände verringert

Instandhaltung: Intelligente Algorithmen erkennen Fehler und Verschleißerscheinungen und die Smart Watch verrät dem Maschinenbediener, wie er die Störungen beheben kann: Ein Forschungsteam vom Fraunhofer IPA hat zusammen mit Partnern aus…

Neuartiges Krebs-Therapeutikum

… mit Komponenten aus der Grundlagenforschung am FMP geht in klinische Phase. Wegweisende Innovationen von Forschenden des Leibniz-Forschungsinstituts für Molekulare Pharmakologie (FMP) lieferten die Basis für die Entwicklung eines Antikörper-Wirkstoff-Konjugats…

Partner & Förderer