Wie Fic-Proteine ihre potenziell tödliche Enzymaktivität regulieren

Links: Die Bindung des Antitoxins (blau) an das Fic-Protein (grau) unterbindet die AMPylierung des Zielproteins (magenta) und erlaubt somit normales Wachstum der Bakterien. Rechts: In Abwesenheit des Antitoxins wird das Zielprotein AMPyliert, wodurch die Zellteilung blockiert wird, was zu abnormalem filamentösem Bakterienwachstum führt. Illustration: Universität Basel<br>

Die Gruppen von Prof. Christoph Dehio und Prof. Tilman Schirmer konnten zeigen, dass durch die Veränderung einer einzigen Aminosäure diese Hemmung der Enzymaktivität aufgehoben wird. Die in der aktuellen Ausgabe der Fachzeitschrift «Nature» publizierten Ergebnisse erlauben es zukünftig, die potenziell tödliche Funktion der Fic-Proteine in Bakterien und höheren Lebewesen aufzuklären.

Fic-Proteine kommen in den meisten Lebensformen vom einfachen Bakterium bis zum Menschen vor. Erst wenige Vertreter dieser Proteinfamilie mit etwa 3000 Mitgliedern wurden bisher untersucht. Es handelt sich dabei um Enzyme, die andere Proteine durch das Anheften einer Adenosinmonophosphat-Gruppe (AMP), Teil des wichtigen Energieträgers ATP, chemisch verändern. Diese als AMPylierung bezeichnete Reaktion modifiziert gezielt die Funktion der Zielproteine.

Am besten untersucht ist die Funktion der Fic-Proteine von krankheitserregenden Bakterien, die in die Wirtszelle eingeschleust werden, um dort zelluläre Signalproteine zum Vorteil des Krankheitserregers zu verändern. Die Mehrheit der Fic-Proteine entfaltet aber vermutlich ihre Wirkung unmittelbar in der Zelle, in der sie produziert werden. Warum aber bisher nur für wenige Vertreter dieser Fic-Proteine eine biochemische Funktion nachgewiesen werden konnte, war bisher unverstanden. Den Grund hierfür haben nun die Forschungsgruppen des Infektionsbiologen Prof. Christoph Dehio und des Strukturbiologen Prof. Tilman Schirmer gefunden.

Das Zentrum der Enzymaktivität von Fic-Proteinen ist blockiert Die Forscher konnten zeigen, dass ein Aminosäurerest (Glutamat-Finger) in das aktive Zentrum von Fic-Proteinen hineinragt. Dieser verhindert eine produktive Bindung des ATP und erklärt den inaktiven Grundzustand dieser Enzyme. Erstaunlicherweise ist es dabei unerheblich, ob der hemmende Aminosäurerest Teil des Fic-Proteins selbst oder aber Teil eines separaten Proteins (genannt Antitoxin) ist. Erst wenn dieser Glutamat-Finger durch Veränderung des Erbguts zurechtgestutzt wird oder das ganze Antitoxin entfernt wird, erwacht die Aktivität des Enzyms – mit teilweise drastischen Konsequenzen für die betroffenen Zellen. So stellen bakterielle Zellen das Wachstum ein, während menschliche Zellen sogar sterben können.

Interdisziplinärer Forschungserfolg Dieser Durchbruch gelang den beiden Forschungsgruppen durch die Kombination von Methoden aus der Mikrobiologie, Zellbiologie, Strukturbiologie und Bioinformatik. Atomare räumliche Strukturen von Fic-Proteinen wurden mittels Röntgenkristallografie durch die Schirmer-Gruppe an der Swiss Light Source (Villigen PSI) bestimmt und liessen die detaillierte Geometrie des aktiven Zentrums des Enzyms mit dem hemmenden Glutamat-Finger erkennen. Die Gruppe von Dehio wiederum konnte durch Kombination von Funktionsstudien und Mutagenese die hemmende Rolle dieses Glutamat-Fingers nachweisen und durch umfangreiche Proteinsequenzvergleiche die allgemeine Bedeutung der Entdeckung aufzeigen.

Auf der Basis der gewonnenen Erkenntnisse sind nunmehr die meisten Vertreter der umfangreichen Fic-Proteinfamilie einer funktionellen Untersuchung zugänglich geworden. Weiterhin können Wissenschaftler mit diesem Wissen künftig detailliert den molekularen Mechanismus der Aktivierung von Fic-Proteinen unter natürlichen Bedingungen untersuchen.

Originalbeitrag
Philipp Engel, Arnaud Goepfert, Frédéric V. Stanger, Alexander Harms, Alexander Schmidt, Tilman Schirmer & Christoph Dehio
Adenylylation control by intra- or intermolecular active-site obstruction in Fic proteins
Nature, published online 22 January 2012 | doi: 10.1038/nature10729

Weitere Auskünfte
• Prof. Dr. Christoph Dehio, Biozentrum der Universität Basel, Tel. 061 267 21 40, E-Mail: christoph.dehio@unibas.ch

• Prof. Dr. Tilman Schirmer, Biozentrum der Universität Basel, Tel. 061 267 28 89, E-Mail: tilman.schirmer@unibas.ch

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neutronen zeigen, wie Fertigspritzen verstopfen

Injektionsnadeln vorgefüllter Fertigspritzen können bei falscher Lagerung verstopfen. Ein Forschungsteam hat den Prozess detailliert und systematisch untersucht, unter anderem an der Forschungs-Neutronenquelle FRM II der Technischen Universität München (TUM). Die…

KI-Methode „DragGAN“ verspricht die digitale Bildbearbeitung zu revolutionieren

Kleidungsstücke an einem digitalen Avatar anprobieren und von allen Seiten begutachten? Die Blickrichtung des Haustieres auf dem Lieblingsfoto anpassen? Oder die Perspektive auf einem Landschaftsbild verändern? Diese und ähnliche Fotobearbeitungen…

Das Neuroblastom unter der Lupe

Neuer Sonderforschungsbereich an der Charité. Das Neuroblastom ist die dritthäufigste bösartige Krebserkrankung bei Kindern. Die Heilungschancen sind sehr unterschiedlich, insbesondere bei fortgeschrittenen Fällen wird der Tumor leider oft resistent gegen…

Partner & Förderer