Erstmalige molekulare Beobachtung des Abbaus der Ribosomen-Untereinheit 30S

Abbau der Ribosomen-Untereinheit 30S
(c) UHH/MIN/Paternoga

Einem Forschungsteam aus dem Fachbereich Chemie der Universität Hamburg ist es erstmalig gelungen, den dynamischen Mechanismus auf molekularer Ebene zu entschlüsseln, mit dem die Ribosomen-Untereinheit 30S durch das Enzym RNAse R abgebaut wird. Die Ergebnisse der Studie wurden im Fachjournal „Nature“ veröffentlicht.

Die Proteinsynthese ist ein überlebenswichtiger und energieaufwändiger Prozess in der Zelle, bei dem Ribosomen eine entscheidende Rolle spielen. Diese vergleichsweise großen Moleküle kommen in den Zellen von Pflanzen, Tieren, Menschen sowie Bakterien vor und stellen als „Proteinfabriken“ der Zelle Eiweißverbindungen her. Hierfür lesen die Ribosomen auf einem Botenmolekül – der messenger RNA (mRNA) – den Bauplan für ein bestimmtes Protein ab und setzen diese Informationen anschließend in neue Eiweiße um. Die Ribosomen bestehen aus zwei Untereinheiten. Die kleine Untereinheit ist für das Ablesen und die Kontrolle der mRNA auf Fehler zuständig, während die große Untereinheit für die Bildung von Proteinen verantwortlich ist.

Für die Proteinsynthese ist eine kontrollierte Produktion und der kontrollierte Umsatz von Ribosomen erforderlich. Während in den vergangenen Jahren die Bildung von Ribosomen immer besser verstanden wurde, fehlte es bisher an strukturellen Erkenntnissen über den Abbau von Ribosomen. Dieser ist wichtig, denn bei Stresssituationen wie Nahrungsmangel fahren Zellen ihren Stoffwechsel herunter, um länger überleben zu können. Diesen Zustand nennt man stationäre Phase. Dabei wird die energieaufwendige Proteinsynthese reduziert und die Ribosomen abgebaut, um die dort hineingesteckte Energie wieder freizusetzen und so für ein längeres Überleben der Zelle zu sorgen.

Für ihre Untersuchungen studierten die Forschenden Bacillus subtilis, ein stäbchenförmiges Bodenbakterium, das in Luft, Staub und Wasser sowie im Darm von Menschen und Tieren anzutreffen ist. „Im Gegensatz zu früheren Studien, haben wir Zellen genommen, die noch wuchsen und nicht in der stationären Phase waren. Wir wollten wissen, welche Vorgänge am Übergang zur stationären Phase passieren,“ sagt Dr. Helge Paternoga vom Fachbereich Chemie der Universität Hamburg, Letztautor der Studie.

Aus früheren Arbeiten wussten die Forschenden, dass bestimmte Enzyme, wie Ribonuclease R (RNase R), an dem Abbauprozess von Ribosomen in Stresssituationen beteiligt sind. Mithilfe der Cryo-Elektronenmikroskopie konnten sie erstmalig die Bindung des Enzyms RNase R an die kleine Ribosomen-Untereinheit 30S zeigen. Das „S“ steht dabei für ‚Svedberg-Einheiten‘ und bezeichnet die Masse der Ribosomen-Untereinheit. Die RNAse R zerschneidet dabei nicht willkürlich die Untereinheit 30S, sondern lagert sich an eine freie Stelle an, die die Forschenden „Hals“ nennen und löst dann in zwei unterschiedlichen Stadien bzw. Umstrukturierungsprozessen den „Kopf“, also den oberen Bereich der Untereinheit heraus. „Im ersten Stadium stößt das Enzym RNase R dabei am ‚Hals‘ auf ein Hindernis und destabilisiert daraufhin den Halsbereich, wodurch dieser flexibler wird. Im zweiten Stadium wird der ‚Kopf‘ gedreht, womit das Hindernis beseitigt ist und das Enzym den Abbauprozess der Untereinheit 30S ungehindert fortsetzen kann“, erklärt Paternoga.

„Unsere in-vitro-Abbauversuche deuten darauf hin, dass die Kopfumstellung eine bedeutende kinetische Barriere für die RNase R darstellt. Dennoch konnten wir zeigen, dass das Enzym allein ausreicht, um den vollständigen 30S-Abbau zu bewerkstelligen,“ sagt Prof. Dr. Daniel Wilson, Leiter der Arbeitsgruppe am Fachbereich Chemie der Universität Hamburg und Co-Autor der Studie.

Wissenschaftliche Ansprechpartner:

Dr. Helge Paternoga
Fakultät für Mathematik, Informatik und Naturwissenschaften
Fachbereich Chemie
Tel.: +49 40 42838-9117
E-Mail: helge.paternoga@uni-hamburg.de

Prof. Dr. Daniel N. Wilson
Fakultät für Mathematik, Informatik und Naturwissenschaften
Fachbereich Chemie
Tel.: +49 40 42838-2841
E-Mail: daniel.wilson@uni-hamburg.de

Originalpublikation:

Structural basis of ribosomal 30S subunit degradation by RNase R,
L. Dimitrova-Paternoga, S. Kasvandik, B. Beckert, S. Granneman, T. Tenson, D. N. Wilson, and H. Paternoga,
Nature (2024).
DOI: https://www.nature.com/articles/s41586-024-07027-6

Weitere Informationen:

https://www.min.uni-hamburg.de/ueber-die-fakultaet/aktuelles/2024/0207-abbau-rib…

Media Contact

Referat Medien- und Öffentlichkeitsarbeit, Abteilung 2

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Wolken bedecken die Nachtseite des heißen Exoplaneten WASP-43b

Ein Forschungsteam, darunter Forschende des MPIA, hat mit Hilfe des Weltraumteleskops James Webb eine Temperaturkarte des heißen Gasriesen-Exoplaneten WASP-43b erstellt. Der nahe gelegene Mutterstern beleuchtet ständig eine Hälfte des Planeten…

Neuer Regulator des Essverhaltens identifiziert

Möglicher Ansatz zur Behandlung von Übergewicht… Die rapide ansteigende Zahl von Personen mit Übergewicht oder Adipositas stellt weltweit ein gravierendes medizinisches Problem dar. Neben dem sich verändernden Lebensstil der Menschen…

Maschinelles Lernen optimiert Experimente mit dem Hochleistungslaser

Ein Team von internationalen Wissenschaftlerinnen und Wissenschaftlern des Lawrence Livermore National Laboratory (LLNL), des Fraunhofer-Instituts für Lasertechnik ILT und der Extreme Light Infrastructure (ELI) hat gemeinsam ein Experiment zur Optimierung…

Partner & Förderer