Enzym verhindert, dass Hirnaktivität aus dem Ruder läuft

Die Plastizität neuronaler Kommunikation, hervorgerufen durch eine 48-stündige Blockade neuronaler Aktivität, korreliert mit der Anzahl der RIM-Molekülcluster in der aktiven Zone. Spalte A ist aufgenommen mit Weitfeldbeleuchtung; B mit dStorm-Mikroskopie
© AG Schoch McGovern

Das Gehirn verfügt über die Fähigkeit, die Kontakte zwischen den Nervenzellen zu modifizieren. So verhindert es unter anderem, dass die Hirnaktivität aus dem Ruder läuft. Forschende der Universität Bonn haben zusammen mit einem Team aus Australien einen Mechanismus identifiziert, der hierbei eine wichtige Rolle spielt. Er verändert in kultivierten Zellen die synaptische Kopplung von Neuronen und damit die Reizweiterleitung und -verarbeitung. Ist er gestört, können möglicherweise Krankheiten wie Epilepsie, Schizophrenie oder Autismus die Folge sein. Die Ergebnisse erscheinen in der Fachzeitschrift Cell Reports.

Fast 100 Milliarden Nervenzellen verrichten im menschlichen Gehirn ihren Dienst. Jede davon verfügt im Schnitt über 1.000 Kontakte zu anderen Neuronen. An diesen sogenannten Synapsen findet die Informationsweitergabe zwischen den Nervenzellen statt.

Die Studienautoren Prof. Dr. Susanne Schoch und Prof. Dr. Dirk Dietrich vom Universitätsklinikum Bonn
© Barbara Frommann/ Uni Bonn

Allerdings sind Synapsen weit mehr als eine simple Verdrahtung. Das lässt sich schon an ihrem Aufbau ablesen: Sie bestehen aus einer Art Sendevorrichtung, der Präsynapse, und einer Empfänger-Struktur, der Postsynapse. Dazwischen liegt der synaptische Spalt. Dieser ist zwar sehr schmal. Dennoch verhindert er, dass die elektrischen Impulse einfach weitergeleitet werden können. Stattdessen rufen sich die Neuronen ihre Informationen über den Spalt hinweg gewissermaßen zu.

Dazu wird die Präsynapse durch eingehende Spannungspulse dazu bewegt, bestimmte Botenstoffe auszuschütten. Diese durchqueren den synaptischen Spalt und docken auf der postsynaptischen Seite an bestimmten „Antennen“ an. Dadurch lösen sie in der Empfängerzelle ebenfalls elektrische Pulse aus. „Wieviel Neurotransmitter die Präsynapse freisetzt und wie stark die Postsynapse darauf reagiert, wird jedoch im Gehirn strikt reguliert“, erklärt Prof. Dr. Susanne Schoch McGovern von der Klinik für Neuropathologie am Universitätsklinikum Bonn.

Ausgeklügelte Kontrollmechanismen

So werden beim Lernen bestimmte Synapsen gestärkt: Schon ein schwacher elektrischer Reiz des Sender-Neurons reicht dann aus, um in der Empfängerzelle eine starke Antwort auszulösen. Wenig genutzte Synapsen verkümmern dagegen. Zusätzlich verhindern ausgeklügelte Kontrollmechanismen, dass sich die elektrische Aktivität im Gehirn zu stark ausbreiten kann – oder im Gegenteil zu schnell wieder versiegt. „Wir sprechen auch von synaptischer Homöostase“, erklärt Prof. Dr. Dirk Dietrich von der Klinik für Neurochirurgie am Universitätsklinikum. „Sie sorgt dafür, dass sich die Hirnaktivität stets in einem gesunden Bereich befindet.“

Welche Prozesse dieses Gleichgewicht aufrechterhalten, ist bislang aber erst in Teilen verstanden. Ein Mechanismus, mit dem das Gehirn auf langanhaltende Veränderungen der neuronalen Aktivität reagiert, ist die sogenannte homeostatische Plastizität. „Wir konnten nun zeigen, dass ein Protein namens RIM1 eine Schlüsselrolle in diesem Prozess spielt“, sagt Schoch McGovern. RIM1 kommt gehäuft in der sogenannten „aktiven Zone“ der Präsynapse vor – das ist der Bereich, an dem die Neurotransmitter ausgeschüttet werden.

Wie jedes Protein besteht RIM1 aus einer großen Zahl aneinanderhängender Aminosäuren. Die Forschenden haben nun nachgewiesen, dass manche dieser Aminosäuren durch ein Enzym mit einer chemischen Verbindung verknüpft werden, einer Phosphatgruppe. Je nachdem, welche Aminosäure so modifiziert wird, kann die Präsynapse danach mehr oder auch weniger Botenstoff freisetzen. Die Phosphatgruppen bilden sozusagen das „Gedächtnis“ der Synapsen, mit dem diese das aktuelle Aktivitätsniveau in Erinnerung behalten. „In der Präsynapse stehen transmittergefüllte Bläschen wie die Pfeile eines gespannten Bogens zum Abschuss bereit“, sagt Dietrich. „Sobald ein Spannungspuls einläuft, werden sie blitzschnell freigesetzt. Die Phosphorylierung verändert die Zahl dieser Bläschen.“

Synapse ruft mit lauterer Stimme

Kann die Präsynapse dadurch mehr Bläschen „verschießen“, wird ihr Ruf über den synaptischen Spalt bildlich gesprochen lauter. Nimmt dagegen die Zahl der Bläschen durch Veränderungen im Phosphorylierungsstatus von RIM1 stark ab, ist der Ruf kaum noch hörbar. „Welcher Effekt eintritt, hängt von der phosphorylierten Aminosäure ab“, sagt Dr. Johannes Alexander Müller aus der Arbeitsgruppe von Schoch McGovern. Er teilt sich mit seiner Kollegin Dr. Julia Betzin die Erstautorenschaft der Studie.

Über RIM1 kann das Gehirn die Aktivität einzelner Synapsen also vermutlich sehr genau einstellen. Eine weitere Schlüsselrolle spielt dabei das Enzym SRPK2: Es hängt die Phosphatgruppen an die Aminosäuren von RIM1. Daneben gibt es aber noch weitere Akteure – zum Beispiel Enzyme, die die Phosphatgruppen im Bedarfsfall wieder entfernen. „Wir gehen davon aus, dass ein ganzes Netzwerk von Enzymen existiert, die auf RIM1 einwirken, und dass sich diese Enzyme auch gegenseitig in ihrer Aktivität steuern“, erklärt Dietrich.

Das synaptische Gleichgewicht ist immens wichtig; ist es gestört, können Krankheiten wie die Epilepsie, aber möglicherweise auch Schizophrenie oder Autismus die Folge sein. Interessanterweise ist die Erbinformation für RIM1 bei Menschen mit diesen psychischen Störungen oft verändert. Damit ist das RIM1-Protein bei ihnen eventuell weniger funktionsfähig. „Wir wollen diese Zusammenhänge nun weiter aufklären“, sagt Schoch McGovern, die auch Mitglied im Transdisziplinären Forschungsbereich „Leben und Gesundheit“ ist. „Vielleicht erwachsen aus unseren Ergebnissen langfristig neue Therapie-Optionen für diese Erkrankungen, auch wenn es bis dahin sicher noch ein weiter Weg ist.“

Beteiligte Institutionen und Förderung:
Die Studie wurde durch die Deutsche Forschungsgemeinschaft (DFG), das BONFOR-Programm des Universitätsklinikums Bonn, das Australische National Health and Medical Research Council (NHMRC) sowie die Krebsforschungs-Stiftung und das Krebs-Institut New South Wales gefördert. An der Arbeit waren neben der Universität und dem Universitätsklinikum Bonn die Universität Sydney sowie die australische Firma i-Synapse beteiligt.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Susanne Schoch McGovern
Klinik für Epileptologie und Institut für Neuropathologie am Universitätsklinikum Bonn
Tel.: +49 228 28719109
E-Mail: susanne.schoch@uni-bonn.de

Prof. Dr. Dirk Dietrich
Klinik für Neurochirurgie
Universitätsklinikum Bonn
Tel.: +49 228 287 19224
E-Mail: dirk.dietrich@uni-bonn.de

Originalpublikation:

Johannes Alexander Müller, Julia Betzin, Jorge Santos-Tejedor, Annika Mayer, Ana-Maria Oprişoreanu, Kasper Engholm-Keller, Isabelle Paulußen, Polina Gulakova, Terrence Daniel McGovern, Lena Johanna Gschossman, Eva Schönhense, Jesse R. Wark, Alf Lamprecht, Albert J. Becker, Ashley J. Waardenberg, Mark E. Graham, Dirk Dietrich, Susanne Schoch: A presynaptic phosphosignaling hub for lasting homeostatic plasticity; Cell Reports; DOI: https://doi.org/10.1016/j.celrep.2022.110696

http://www.uni-bonn.de/

Media Contact

Svenja Ronge Dezernat 8 - Hochschulkommunikation
Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer