Entern mit "gezückter Waffe"

Die spiralförmige Virus-Erbinformation (grün/fluoreszenzmikroskopisch sichtbar gemacht); links: Originalaufnahme, rechts: Illustration Liedmann et al., Nature Communications

Damit Grippeviren sich vermehren können, sind sie auf Zellen eines menschlichen oder tierischen Körpers angewiesen. Sie entern die Zellen, zum Beispiel auf der Lungenoberfläche, und ihr Erbgut wandert in den Zellkern, wo es vervielfältigt wird.

Am Ende entstehen neue Viren. Einem Team um Wissenschaftler aus dem Exzellenzcluster „Cells in Motion“ (CiM) der Universität Münster ist es nun erstmals gelungen, Strukturen des Virus-Erbguts im Inneren von menschlichen Zellen lichtmikroskopisch sichtbar zu machen und auf diesem Wege Erkenntnisse darüber zu gewinnen, auf welche Weise die Grippeviren die Immunantwort der Zellen ausschalten. Die Ergebnisse deuten darauf hin, dass das Viruspartikel quasi mit „gezückter Waffe“ in die Zelle eindringt und die für den Menschen wichtige Immunantwort verhindert.

Erstmals machten die Forscher die in acht Segmente unterteilte spiralförmige Virus-Erbinformation lichtmikroskopisch sichtbar. „Wir identifizierten virale Proteine, die maßgeblich daran beteiligt sind, die Immunantwort der Zelle unmittelbar nach dem Eintritt des Viruspartikels zu unterbinden.

Diese Funktion war bislang nicht bekannt“, erklärt Swantje Liedmann vom Institut für Molekulare Virologie der Universität Münster, Erstautorin der im Online-Fachmagazin „Nature Communications“ veröffentlichten Studie. Beteiligt sind unter anderem virale Proteine, die bekannt dafür waren, eine Rolle bei der Vermehrung des Erbgutes zu spielen.

Experten wissen schon länger, dass Grippeviren ein „NS 1“ genanntes Protein besitzen, welches die Immunabwehr sehr effizient blockiert. „Wir haben uns gefragt, was der Sinn dahinter ist, dass es noch weitere Proteine für denselben Zweck gibt. Wir vermuten, dass 'NS 1' erst zu einem etwas späteren Zeitpunkt wirksam wird als die von uns beobachteten Proteine“, so Swantje Liedmann.

Eine zentrale Rolle bei der Studie spielte das eingesetzte bildgebende Verfahren. Gemeinsam mit Wissenschaftlern aus Memphis, USA, setzten die Münsteraner eine hochauflösende Mikroskopiertechnik ein, die im CiM auch für andere Fragestellungen genutzt wird: die „STORM“-Technologie (die Abkürzung steht für „stochastic optical reconstruction microscopy“).

Diese Fluoreszenzmikroskopie-Technik eröffnet viele Möglichkeiten, die Infektionsbiologie von Grippeviren und anderen Krankheitserregern weiter zu erforschen. „Vor allem die Lokalisierung von Virusbestandteilen in der Zelle sowie die Untersuchungen der Interaktion mit Bestandteilen der Zelle werden durch diese Technologie möglich“, erklärt Swantje Liedmann.

Durch die genaue Klärung der Frage, wie Viren die Immunantwort ihrer Wirtszellen hemmen, erhoffen sich die Forscher in Zukunft auch Ansätze, um neue antiviralen Medikamente zu entwickeln.

Originalpublikation:

Liedmann S. et al. (2014): Viral suppressors of the RIG-I-mediated interferon response are pre-packaged in influenza virions. Nature Communications, DOI: 10.1038/ncomms6645

Weitere Informationen:

http://www.nature.com/ncomms/2014/141209/ncomms6645/full/ncomms6645.html  – Originalpublikation

Media Contact

Juliane Albrecht idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-muenster.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer