Eine künstliche Zelle auf einem Chip

The researchers used the newly developed microfluidic platform to produce three different types of vesicles with a uniform size but different cargoes: β-galactosidase (red vesicle), glucose oxidase (green vesicle) or horseradish peroxidase (blue). The water-soluble enzymes gradually convert the starting product into the final colored product Resorufin, which -- like all of the intermediates -- enters the surrounding solution via selective channels in the vesicle membranes.
Credit: Department of Chemistry, University of Basel

Forschende der Universität Basel haben ein exakt kontrollierbares System entwickelt, um biochemische Reaktionskaskaden in Zellen nachzuahmen. Sie nutzen die Mikrofluid-Technik um Mini-Reaktionscontainer aus Polymeren herzustellen, die sie mit den gewünschten Eigenschaften ausstatten. Nützlich ist diese «Zelle auf einem Chip» nicht nur für die Erforschung von Prozessen in Zellen, sondern auch für die Entwicklung neuer Synthesewege für chemische Anwendungen oder für biologische Wirkstoffe in der Medizin.

Um zu überleben, zu wachsen und sich zu teilen, sind Zellen auf eine Vielzahl verschiedener Enzyme angewiesen, die zahlreiche aufeinander folgende Reaktionen katalysieren. Wann bestimmte Enzyme in welchen Konzentrationen vorliegen und welches das optimale Mengenverhältnis zwischen ihnen ist, lässt sich aufgrund der Komplexität der Vorgänge in lebenden Zellen nicht bestimmen. Stattdessen dienen einfachere, synthetische Systeme als Modelle für die Untersuchung dieser Prozesse. Die synthetischen Systeme simulieren dabei die Unterteilung lebender Zellen in Kompartimente, also voneinander abgegrenzte Bereiche.

Grosse Ähnlichkeit mit natürlichen Zellen

Das Team von Prof. Dr. Cornelia Palivan und Prof. Dr. Wolfgang Meier vom Departement Chemie der Universität Basel hat nun eine neue Strategie zur Herstellung derartiger synthetischer Systeme entwickelt. Sie produzieren dazu verschiedene synthetische Mini-Reaktionscontainer, Vesikel genannt, die in ihrer Gesamtheit als Zellmodelle dienen. Davon berichten sie im Fachjournal «Advanced Materials».

«Wir stützen uns hierbei nicht wie früher auf die Selbstorganisation der Vesikel, sondern haben eine effiziente Mikrofluid-Technik entwickelt, um enzymbeladene Vesikel kontrolliert zu produzieren», erläutert Wolfgang Meier. Die Grösse und die Zusammensetzung der Vesikel lassen sich mit der neuen Methode gezielt steuern, sodass in den unterschiedlichen Vesikeln dann – ähnlich wie in unterschiedlichen Kompartimenten einer Zelle – verschiedene biochemische Reaktionen ablaufen können ohne sich gegenseitig zu beeinflussen.

Für die Herstellung füllen die Forscher die verschiedenen Komponenten der gewünschten Vesikel in winzige Kanäle auf einem Silizium-Glas-Chip. Auf dem Chip treffen sich alle Mikrokanäle an einer Kreuzung. Unter den richtigen, einstellbaren Bedingungen bilden sich am Kreuzungspunkt der Kanäle gleichgrosse Polymertropfen, die in einer wässrigen Emulsion schwimmen.

Präzise kontrollierbar

Die Vesikel bestehen aus einer Polymermembran als Hülle und einer wässrigen Lösung im Inneren. Gleich bei der Herstellung werden die Vesikel gezielt mit unterschiedlichen Enzymkombinationen gefüllt. «Mit dieser neu entwickelten Methode können wir massgeschneiderte Vesikel herstellen und die gewünschte Konzentration der enthaltenen Enzyme genau einstellen“, fasst Dr. Elena C. dos Santos, Erstautorin der Studie, die entscheidenden Vorteile zusammen.

In die Membran integrierte Proteine fungieren als Poren und ermöglichen den spezifischen Ein- und Austritt von Verbindungen in und aus den Polymervesikeln. Die Porengrössen sind dabei so bemessen, dass sie nur die Passage spezifischer Moleküle oder Ionen erlauben. Prozesse, die in der Natur eng nebeneinander in einer Zelle ablaufen, lassen sich so getrennt untersuchen.

«Wir konnten zeigen, dass das neue System eine gute Grundlage bietet, um enzymatische Reaktionsprozesse zu untersuchen», erklärt Cornelia Palivan. «Sie lassen sich optimieren, um die Produktion eines gewünschten Endprodukts zu erhöhen. Zudem sind wir mit der Technik in der Lage spezifische Mechanismen genau zu untersuchen, die bei Stoffwechselkrankheiten eine Rolle spielen oder die Umsetzung bestimmter Medikamente im Körper betreffen.»

Die Arbeiten wurden vom Swiss Nanoscience Institute der Universität Basel, dem Schweizerischen Nationalfonds und dem Nationalen Forschungsschwerpunkt «Molecular Systems Engineering» unterstützt.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Cornelia G. Palivan, Universität Basel, Departement Chemie, Tel. +41 61 207 38 39, E-Mail: cornelia.palivan@unibas.ch
Prof. Dr. Wolfgang P. Meier, Universität Basel, Departement Chemie, Tel. +41 61 207 38 02, E-Mail: wolfgang.meier@unibas.ch

Originalpublikation:

E. C. dos Santos, A. Belluati, D. Necula, D. Scherrer, C. E. Meyer, R. P. Wehr, C. G. Palivan,
W. Meier
Combinatorial strategy for studying biochemical pathways in double emulsion templated cell-sized compartment
Advanced Materials (2020), DOI: 10.1002/adma.202004804

Weitere Informationen:

https://youtu.be/lftbbVRce4k

http://www.unibas.ch

Media Contact

Dr. Angelika Jacobs Kommunikation & Marketing
Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Transparente emissive Mikrodisplays

… für ultraleichte und kompakte Augmented-Reality-Systeme. Im Rahmen des Projektes HOT („Hochperformante transparente und biegbare Mikro-Elektronik für photonische und optische Anwendungen“) haben Forschende des Fraunhofer-Instituts für Photonische Mikrosysteme IPMS ein…

Partner & Förderer