Ein Gen für die Massenproduktion von Antikörpern

Glycosylated antibody

(c)IMBA/Méhu

WissenschaftlerInnen am IMBA – Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften – bringen im Zuge der aktuellen COVID19 Situation neue Erkenntnisse über die Biologie und die Struktur von Antikörpern, die eine wesentliche Rolle in der körpereigenen Abwehr spielen. Das Gen JAGN1 hat dabei eine Schlüsselfunktion.

Antikörper spielen in der Medizin eine fundamentale Rolle, wie derzeit bei COVID19 und der Suche nach einem Impfstoff deutlich wird. Diese winzigen Proteine werden auch Immunoglobuline genannt und sind vielseitig gegen Krankheitserreger einsetzbar. Einerseits erkennen und markieren sie körperfremde Substanzen, damit sie auch langfristig von unseren Immunzellen erkannt werden. Sie helfen andererseits auch gezielt dabei, Eindringlinge mit Hilfe anderer Immunzellen zu zerstören. In speziellen Produktionsanlagen, in den so genannten Plasmazellen, werden pro Sekunde tausende solcher Antikörper produziert.

JAGN1 als Player für das Immunsystem

Das Forschungsteam rund um Josef Penninger konnte nun die Rolle eines bestimmten Gens für die Produktion von Antikörpern beschreiben, und stützte sich dabei auf Daten von PatientInnen, die an einer seltenen genetischen Krankheit leiden. Möglich wurde dies durch eine Kooperation mit dem Team um Christoph Klein am Haunerschen Kinderspital in München. Bereits 2014 wurde das Gen JAGN1 von den Teams um Klein und Penninger als wichtiger Player im Immunsystem identifiziert. Ist JAGN1 defekt, kommt es bei Betroffenen zu einer Fehlfunktion wichtiger weißer Blutkörperchen, den sogenannten neutrophilen Granulozyten, und somit zu einer schweren angeborenen Immunschwäche. PatientInnen leiden häufig unter gravierenden Infektionen, weil sich ihr Körper nicht ausreichend gegen Bakterien- und Pilzinfektionen wehren kann.

In der aktuellen Studie beleuchteten die ForscherInnen nun die Rolle von JAGN1 für die sogenannten B-Zellen. Wenn B-Zellen körperfremde Substanzen erkennen, sind sie in der Lage, sich in Plasmazellen zu entwickeln. Jede Plasmazelle kann dann pro Sekunde Tausende von spezifischen Antikörpern ausscheiden. Diese Massenproduktion findet an einem bestimmten Ort in der Zelle, im sogenannten Endoplasmatischen Retikulum statt. Anschließend werden die fertig gebauten Antikörper in einer bestimmten Region mit Zuckermolekülen „verziert“. Dieser Prozess der sogenannten Glykosylierung dient allerdings nicht der Dekoration, sondern erleichtert den Antikörper die Bindung zu anderen Immunzellen, um die Abwehrreaktion des Körpers zu verstärken. Denn charakteristische Zuckerstrukturen, die an Proteine angeheftet werden, haben Auswirkungen auf die Protein-stabilität und die Kommunikation zwischen Zellen und deren Umgebung.

Seltener Gendefekt liefert grundlegendes Wissen über Antikörper

„Als wir JAGN1 in B-Zellen von Mäusen außer Gefecht setzten, konnten wir eine drastische Reduktion der Antikörper messen. Auch die typischen Zuckersignaturen, die auf den Antikörper sitzen, hatten sich verändert. JAGN1 beeinflusst die Antikörper-Fabriken in den Zellen“, erklärt die Wissenschaftlerin Astrid Hagelkrüys, Erstautorin der aktuellen Publikation. „Zu unserer Überraschung führt diese Veränderung der Zuckerstrukturen der aber auch zu einer besseren Bindungsfähigkeit der Antikörper an andere Immunzellen und verstärkt die Abwehrreaktion.“ Auch in menschlichen Proben konnten die WissenschaftlerInnen diesen Mechanismus nachweisen. „Seltene Gendefekte betreffen zwar nur wenige Menschen, aber manchmal lassen sich daraus grundlegende Prinzipien der Biologie ableiten. In diesem Fall konnten wir nachweisen, dass ein bestimmtes Gen auf das Endoplasmatische Retikulum wirkt und daher für die Massenproduktion von Antikörpern essentiell ist. Gleichzeitig haben wir auch herausgefunden, dass die „Zuckerhülle“ von Antikörpern verändert wird, was eine wichtige Auswirkung darauf hat, wie solche Antikörper im Körper tatsächlich funktionieren“, sagt Josef Penninger, Direktor des Life Science Institut der University of British Columbia, der nach wie vor eine Forschungsgruppe am IMBA leitet.

Über IMBA
Das IMBA – Institut für Molekulare Biotechnologie ist das größte Institut der Österreichischen Akademie der Wissenschaften (ÖAW) mit dem Fokus auf zukunftsweisende Grundlagenforschung. 16 Forschungsgruppen stellen sich den molekularen Rätseln und unerforschten Gebieten der Molekularbiologie und Medizin. Erkenntnisse aus den Bereichen Zell- und RNA- Biologie, molekularer Medizin und Stammzellbiologie bilden den Nährboden für eine Medizin der Zukunft. Die Stammzellinitiative am IMBA wird durch eine Förderung des Bundesministeriums für Wissenschaft sowie durch die Stadt Wien finanziert.
www.imba.oeaw.ac.at

Wissenschaftliche Ansprechpartner:

ines.mehu-blantar@imba.oeaw.ac.at

Originalpublikation:

A crucial role for Jagunal homolog 1 in humoral immunity and antibody glycosylation in mice and humans, Hagelkruys et al, Journal of Experimental Medicine, 2020. doi: 10.1084/jem.20200559

Media Contact

Mag. Evelyn Devuyst IMBA Communications
IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Mit UV-C-Strahlung wirksam gegen das Coronavirus vorgehen

PTB untersuchte den Raumluftreiniger von Braunschweiger Entwicklern: Für den untersuchten Prototyp lässt sich abschätzen, dass durch das Gerät geführte Viren zerstört und somit die Virenlast in der Raumluft prinzipiell deutlich…

Azoren-Plateau entstand durch Vulkanismus und tektonische Dehnung

Der submarine Terceira-Graben geht auf tektonische und vulkanische Aktivitäten zurück und ähnelt damit kontinentalen Grabensystemen. Dies zeigen Lavaproben vom Meeresboden, die 2016 bei der Expedition M128 mit dem Forschungsschiff Meteor…

Schmerzmittel für Pflanzen

Forschende am IST Austria behandeln Pflanzen mit Schmerzmitteln und gewinnen so neue Erkenntnisse über das Pflanzenwachstum. Neue Studie in Cell Reports veröffentlicht. Jahrhundertelang haben Menschen Weidenrinde zur Behandlung von Kopfschmerzen…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close