Durch maschinelles Lernen Stoffklassen erkennen

Kai Dührkop from the University of Jena presents the visualisation of a measured data set with the CANOPUS software.
Foto: Jens Meyer/Uni Jena

Bioinformatiker der Friedrich-Schiller-Universität Jena haben gemeinsam mit Kollegen aus Finnland und den USA eine weltweit einmalige Methode entwickelt, bei der alle Metaboliten in einer Probe berücksichtigt werden können und sich somit der Erkenntnisgewinn bei der Untersuchung solcher Moleküle erheblich vergrößert. Über seinen Erfolg berichtet das Team aktuell im renommierten Fachjournal „Nature Biotechnology“.

Alles, was lebt, hat Metabolite, produziert Metabolite und verbraucht Metabolite. Diese Moleküle gehen als Zwischen- und Endprodukte aus chemischen Prozessen innerhalb des Stoffwechsels eines Organismus hervor. Damit haben sie nicht nur eine enorme Bedeutung für unser Leben, sondern sie liefern auch wertvolle Informationen über den Zustand eines Lebewesens oder einer Umgebung.

So lassen sich anhand von Metaboliten beispielsweise Krankheiten erkennen oder – im Bereich der Umwelttechnologie – Trinkwasserproben untersuchen. Doch die Diversität dieser chemischen Verbindungen bereitet der Wissenschaft Schwierigkeiten. Denn bisher sind nur vergleichsweise wenige Moleküle bekannt und definiert. Wird eine Probe im Labor analysiert, so kann bislang nur ein relativ kleiner Teil davon wirklich identifiziert werden – der Großteil an Molekülen bleibt unbekannt.

Bioinformatiker der Friedrich-Schiller-Universität Jena haben nun gemeinsam mit Kollegen aus Finnland und den USA eine weltweit einmalige Methode entwickelt, bei der alle Metaboliten in einer Probe berücksichtigt werden können und sich somit der Erkenntnisgewinn bei der Untersuchung solcher Moleküle erheblich vergrößert. Über seinen Erfolg berichtet das Team aktuell im renommierten Fachjournal „Nature Biotechnology“.

Struktureigenschaften lernen, erkennen und zuordnen

„Bei der Massenspektrometrie, eine der meistgenutzten experimentellen Methoden zur Analyse von Metaboliten, werden nur die Moleküle identifiziert, die durch den Abgleich mit einer Datenbank eindeutig zugeordnet werden können. Alle anderen, bisher unbekannten Moleküle, die in der Probe enthalten sind, liefern keine Informationen“, erklärt Prof. Dr. Sebastian Böcker von der Universität Jena. „Mit unserem neu entwickelten Verfahren namens CANOPUS entlocken wir allerdings auch den unidentifizierten Metaboliten in einer Probe wertvolle Erkenntnisse, da wir sie bereits bekannten Stoffklassen zuordnen können.“

CANOPUS funktioniert in zwei Phasen: Zunächst erzeugt das Verfahren, aus dem mittels Massenspektrometrie gemessenen Fragmentierungsspektrum, einen sogenannten molekularen Fingerabdruck. Dieser beinhaltet Informationen über die Struktureigenschaften des gemessenen Moleküls. In einem zweiten Schritt ordnet das System den Metaboliten mithilfe des Fingerabdrucks einer bestimmten Stoffklasse zu, ohne diesen dafür identifizieren zu müssen.

Das System lernt selbst

„Maschinelle Lernverfahren benötigen in der Regel große Datenmengen, um trainiert zu werden. Unser zweistufiges Verfahren hingegen ermöglicht es, im ersten Schritt auf einer vergleichsweise kleinen Datenmenge von zehntausenden Fragmentierungsspektren zu trainieren, um dann im zweiten Schritt aus Millionen von Strukturen die charakteristischen Struktureigenschaften zu bestimmen, die für eine Stoffklasse signifikant sind“, erklärt Dr. Kai Dührkop von der Universität Jena. Das System detektiert also diese Struktureigenschaften bei einem unbekannten Molekül innerhalb einer Probe und ordnet es dann einer bestimmten Stoffklasse zu. „Allein diese Information reicht bereits aus, um viele wichtige Fragestellungen zu beantworten“, betont Böcker. „Die eindeutige Identifikation eines Metabolits wäre weitaus aufwendiger und ist häufig überhaupt nicht notwendig.“ Insgesamt liege dem CANOPUS-Verfahren ein tiefes neuronales Netz von rund 2.500 Verbindungsklassen zugrunde.

Mit ihrer Methode haben die Jenaer Bioinformatiker beispielsweise die Darmflora von Mäusen verglichen, bei denen eine Versuchsgruppe mit Antibiotika behandelt worden war. Die Untersuchungen zeigen, welche Metabolite die Maus und ihre Darmflora produzieren. Solche Forschungsergebnisse können wichtige Erkenntnisse über das menschliche Verdauungs- und Stoffwechselsystem ermöglichen. Durch zwei weitere Anwendungsbeispiele, die sie in ihrer Studie ausführen, zeigen die Jenaer Wissenschaftler die Funktionalität und Aussagekraft des CANOPUS-Verfahren.

Jenaer Molekül-Suchmaschine millionenfach genutzt

Mit der neue Methode erweitern die Jenaer Bioinformatiker die Möglichkeiten der Suchmaschine für molekulare Strukturen „CSI:FingerID“, die sie der internationalen Forschungsgemeinschaft seit rund fünf Jahren zur Verfügung stellen. Weltweit nutzen Forscher dieses Angebot inzwischen tausende Male täglich, um ein Massenspektrum aus einer Probe mit verschiedenen Online-Datenbanken abzugleichen und so einen Metaboliten genauer bestimmen zu können. „Wir nähern uns der einhundertmillionsten Anfrage und sind uns sicher, dass das CANOPUS-Angebot die Nutzerzahlen weiter steigen lassen wird“, sagt Sebastian Böcker.

Das neue Verfahren stärkt die Metabolomik, also die Erforschung dieser omnipräsenten Moleküle, und fördert ihr Potenzial in vielen Bereichen, etwa in der Pharmazie. Viele bereits lange Zeit verwendete Arzneiwirkstoffe sind Metabolite, beispielsweise das bekannte Penicillin – weitere könnten mit ihrer Hilfe entwickelt werden.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Sebastian Böcker
Institut für Informatik der Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2, 07743 Jena
Tel.: 03641 / 946450
E-Mail: sebastian.boecker[at]uni-jena.de

Originalpublikation:

K. Dührkop, L.-F. Nothias, M. Fleischauer., R. Reher, M. Ludwig, M. A. Hoffmann, D. Petras, W. H. Gerwick, J. Rousu, P. C. Dorrestein, S. Böcker: Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra, Nature Biotechnology, 2020: https://doi.org/10.1038/s41587-020-0740-8

http://www.uni-jena.de/

Media Contact

Sebastian Hollstein Abteilung Hochschulkommunikation/Bereich Presse und Information
Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Herz-Kreislauf-Erkrankungen: Neues Computermodell verbessert Therapie

Mithilfe mathematischer Bildverarbeitung haben Wissenschafter der Forschungskooperation BioTechMed-Graz einen Weg gefunden, digitale Zwillinge von menschlichen Herzen zu erstellen. Die Methode eröffnet völlig neue Möglichkeiten in der klinischen Diagnostik. Obwohl die…

Teamarbeit im Molekül

Chemiker der Universität Jena erschließen Synergieeffekt von Gallium. Sie haben eine Verbindung hergestellt, die durch zwei Gallium-Atome in der Lage ist, die Bindung zwischen Fluor und Kohlenstoff zu spalten. Gemeinsam…

Älteste Karbonate im Sonnensystem

Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde. Ein 2019 in Norddeutschland niedergegangener Meteorit enthält Karbonate, die zu den ältesten im Sonnensystem überhaupt zählen und zugleich einen Nachweis der…

Partner & Förderer

Indem Sie die Website weiterhin nutzen, stimmen Sie der Verwendung von Cookies zu. mehr Informationen

Die Cookie-Einstellungen auf dieser Website sind so eingestellt, dass sie "Cookies zulassen", um Ihnen das bestmögliche Surferlebnis zu bieten. Wenn Sie diese Website weiterhin nutzen, ohne Ihre Cookie-Einstellungen zu ändern, oder wenn Sie unten auf "Akzeptieren" klicken, erklären Sie sich damit einverstanden.

schließen