Die Geburt des Partikels

Experiment, bei dem durch langsame Zugabe verschiedener Lösungen die Reaktion gestartet, kontrolliert und untersucht werden kann.

Eine der Hauptaufgaben der Chemie ist, die Bildung von Materialien zu kontrollieren beziehungsweise neue Materialien maßzuschneidern. Um die dabei angewandten Synthesen zu optimieren, ist es von grundlegender Bedeutung zu verstehen, wie der Phasenübergang von der Lösung zum Partikel funktioniert.

Im Arbeitsbereich des Chemikers Dr. Denis Gebauer ist es nun im Rahmen einer internationalen Kooperation gelungen, am Beispiel des Eisenoxids, das bedeutende Anwendungen im Bereich der Medizin, Katalyse und Sensorik hat, diese „Geburt“ der Partikel im Detail beobachtbar zu machen.

Die Doktorandin Johanna Scheck hat ein Experiment entwickelt, mit dem die hohe Reaktivität der Eisen(III)-Ionen in den Griff bekommen werden kann, wodurch die einzelnen Stadien bei der Entstehung von Eisenoxidpartikeln analysierbar werden. Die Ergebnisse wurden im Journal of Physical Chemistry Letters vom 18. August 2016 veröffentlicht und von den Editoren in den sogenannten „Spotlights“ derselben Ausgabe hervorgehoben.

„Das ist fundamentale physikalische Chemie“, beurteilt Denis Gebauer, Research Fellow am Zukunftskolleg der Universität Konstanz, die Arbeit der Doktorandin Johanna Scheck. Zumal die experimentellen Bemühungen zur Verlangsamung der hohen Reaktivität von Eisen(III) sowie der Umfang der eingesetzten Analytik nicht unerheblich waren. Selbst ein Besuch am ALBA-Synchrotron in der unmittelbaren Nähe von Barcelona gehörte zu den Maßnahmen.

In einem speziellen Beschleunigerring wurde die Größenverteilung und Wechselwirkung von Partikeln in den einzelnen „Geburtsstadien“ gemessen. Die entscheidende Modifikation im Vergleich zu früheren Studien besteht in dem stark verlangsamten Ablauf der Mischung, dessen Umsetzung einige Tricks und Kniffe verlangte. Nur einige Hundert Nano-Liter Eisenlösung fließen pro Minute in die Reaktionslösung.

Ein Nanoliter entspricht einem Tausendstel Mikroliter. Zum Vergleich: Ein Regentropfen hat einige Hundert Mikroliter. Damit arbeitet das Konstanzer Experiment mit einer tausendmal kleineren Dosierung pro Minute als vorherige Experimente.

In dem Experiment von Johanna Scheck wurde außerdem noch etwas anders gemacht als in seinen zahlreichen Vorgängern: Die Reihenfolge, in der die Komponenten der Reaktion zugegeben wurden, wurde im Konstanzer Experiment umgedreht. Die Idee dahinter: Anstatt die Reaktion in einer Eisenlösung ablaufen zu lassen, wird die Eisenlösung langsam dem Reaktionsmedium zugefügt und so stark verdünnt. Dadurch lässt sich die Reaktion besser kontrollieren, weil die Stoffmenge an Eisen im Reaktionsgemisch sehr gering ist und so die Reaktion limitiert.

So konnte erreicht werden, dass die Reaktion des Eisen(III)-oxids nicht sofort das System bis zum Stadium eines Partikels durchläuft, sondern dass die einzelnen Stadien der „Geburt“ der Partikel separiert und mit einer Vielzahl von Methoden analysiert werden können.

Dabei konnte die Reihenfolge der grundlegenden chemischen Mechanismen mit dem physikalischen Mechanismus der Phasenseparation in direkte Verbindung gebracht werden. Die Reaktion startet zunächst in einem chemischen Gleichgewicht, das zur Bildung von gelösten, kleinsten Ionen-Zusammenschlüssen – sogenannten Pränukleationsclustern – führt.

Erst eine nachfolgende Reaktion, bei der diese Pränukleationscluster verdichtet werden, ist grundlegend für die eigentliche Phasenseparation. Bei (zu) schnellen Mischvorgängen laufen beide Mechanismen quasi parallel und damit ununterscheidbar ab.

So konnte durch das Experiment eine Diskussion, die seit den 1970er Jahren geführt wird, zumindest für das Eisen(III)-oxid entschieden werden. Es hat sich gezeigt, dass die Reaktion nicht spontan bis hin zum Partikel abläuft, wie weitläufig angenommen wurde. Der Nukleationsmechanismus, der beim ersten Teilprozess des Phasenübergangs wirkt, basiert dabei auf den oben erwähnten Pränukleationsclustern.

Ist der grundlegende Mechanismus dieser „Geburt“ von Partikeln verstanden, stehen ganz neue Möglichkeiten zur Verfügung. „Wir versuchen nun, die Einblicke, die wir in dieser grundlegenden Arbeit gewonnen haben, für das gezielte Design von Materialeigenschaften anzuwenden“, erklärt Denis Gebauer.

Originalpublikation:
Johanna Scheck, Baohu Wu, Markus Drechsler, Rose Rosenberg, Alexander E. S. Van Driessche, Tomasz M. Stawski, and Denis Gebauer. J. Phys. Chem. Lett., 2016, 7 (16), pp 3123–3130.
DOI: 10.1021/acs.jpclett.6b01237
Link zur Originalveröffentlichung: http://dx.doi.org/10.1021/acs.jpclett.6b01237
Link zum Feature in Spotlights: http://dx.doi.org/10.1021/acs.jpclett.6b01782

Faktenübersicht:
Johanna Schecks Stelle wird im Rahmen des internationale Kooperationsprojektes „Materials World Network“ von der Deutschen Forschungsgemeinschaft (DFG) und der National Science Foundation (NSF) gefördert. Das Projekt befasst sich mit den Frühstadien der Partikelbildung. Johanna Scheck ist seit 2013 Doktorandin in der Forschergruppe von Denis Gebauer. Dieser ist ebenfalls seit 2013 Research Fellow am Zukunftskolleg der Universität Konstanz. Die Studie ist eine Kollaboration der Universität Konstanz, des Forschungszentrums Jülich, der Universität Bayreuth, der University of Leeds, des Centre national de la recherche scientifique Grenoble und des Helmholtz-Zentrums Potsdam.

Dr. Denis Gebauer
https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2016/Gebauer-Uni-KN-2016.jpg

Johanna Scheck
https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2016/Scheck-Uni-KN-2016.jpg

Kontakt:
Universität Konstanz
Kommunikation und Marketing
Telefon: + 49 7531 88-3603
E-Mail: kum@uni-konstanz.de

Media Contact

Julia Wandt idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Genetisches Material in Taschen verpacken

Internationales Forscherteam entdeckt, wie der Zellkern aktive und inaktive DNA strukturiert. Alles Leben beginnt mit einer Zelle. Während der Entwicklung eines Organismus teilen sich die Zellen und spezialisieren sich, doch…

Schnüffeln für die Wissenschaft

Artenspürhunde liefern wichtige Daten für Forschung und Naturschutz Die Listen der bedrohten Tiere und Pflanzen der Erde werden immer länger. Doch um diesen Trend stoppen zu können, fehlt es immer…

Ausgestorbenes Atom lüftet Geheimnisse des Sonnensystems

Anhand des ausgestorbenen Atoms Niob-92 konnten ETH-Forscherinnen Ereignisse im frühen Sonnensystem genauer datieren als zuvor. Die Studie kommt auch zum Schluss, dass in der Geburtsumgebung unserer Sonne Supernova-Explosionen stattgefunden haben…

Partner & Förderer