Der Türsteher im Gehirn

Türsteher des Gehirns © Rieger IST Austria

Der Hippocampus ist eine Region im Gehirn, die viele Nervenzellen enthält, die uns bei der Navigation im Raum helfen. Dies führt zu dem Spitznamen dieses Bereichs: das GPS des Gehirns. Während die höheren Bereiche der Hirnrinde Informationspakete an den Hippocampus senden, um Ortungssignale zu erzeugen, enthalten allerdings nicht alle Pakete relevante Informationen.

Deshalb muss der Hippocampus über einen Mechanismus verfügen, um eingehende Signale zu selektieren. Ein solcher Türsteher könnte die Körnerzelle sein, ein Typ von Neuron, der am Eingang des Hippocampusschaltkreises liegt.

Identifizieren der richtigen Zellen

Als IST Austria Professor Peter Jonas, Xiaomin Zhang und Alois Schlögl begannen, neuronale Signale in Körnerzellen zu untersuchen, war das Hauptproblem jedoch die Identifizierung der Zellen. In der Vergangenheit konnten die Experten nicht garantieren, dass sie die Zellen korrekt identifizieren.

„Da diese Region dicht mit verschiedenen Arten von Neuronen besetzt ist, ist es technisch schwierig, die Körnerzellen, also die Zellen, an denen wir interessiert waren, zu identifizieren“, sagt Xiaomin Zhang, die Erstautorin der Arbeit. So war es sehr schwierig, die Aktivität von Körnerzellen von der anderer Arten von Neuronen, die sich in derselben Region befinden, zu unterscheiden.

Darüber hinaus zeigen Körnerzellen trotz ihrer großen Anzahl typischerweise eine sehr spärliche Aktivität, wodurch andere Zelltypen mit höheren Aktivitätsniveaus das Bild dominieren könnten.

Türsteher des Hippocampus

Um die ein- und ausgehenden Signale der Körnerzellen aufzuzeichnen, entwickelten die Wissenschaftler eine neuartige Aufnahmetechnik und einen Algorithmus für maschinelles Lernen, um diese Signale zu entschlüsseln. Um die Nervenzellen eindeutig zu identifizieren, wurden die Zellen während der Aufzeichnung mit einem Tracer gefüllt.

Insgesamt zeichneten sie fast hundert Körnerzellen auf und erzeugten so einen großen Datensatz, der die Aktivität dieses wichtigen Zelltyps beschreibt. Sie stellten fest, dass eine Mehrheit der Neuronen räumliche Informationen erhält. Doch nur eine Minderheit von Neuronen gibt diese räumlichen Informationen an den Rest des Hippocampus weiter. Somit scheinen die Körnerzellen tatsächlich als Türsteher zu fungieren.

Verarbeitung räumlicher Informationen

Körnerzellen selektieren jedoch nicht nur Informationen, sondern scheinen auch an der Informationsverarbeitung beteiligt zu sein. Das Team stellte fest, dass der Input der Körnerzellen breit gefächert ist, der Output jedoch sehr viel selektiver.

Vorgelagerte kortikale Neurone sind oft Gitterzellen, die an mehreren Stellen der Umgebung Aktivität erzeugen. Im Gegensatz dazu, sind Neurone in den nachgeschalteten Bereichen des Hippocampus typischerweise Platzzellen, die nur an einer einzigen Stelle in der Umgebung feuern. Die neue Studie deutet darauf hin, dass Körnerzellen an dieser Umwandlung beteiligt sind.

„Vereinfacht ausgedrückt, können wir uns die Körnerzelle als eine Einheit vorstellen, die eine neuronale Sprache in eine andere übersetzt“, erklärt Jonas.

Einsparung von Rechenleistung für die Zukunft

Die Mehrheit der Körnerzellen empfängt räumliche Informationen, aber nur 5% erzeugen räumlichen Output. Xiaomin Zhang erklärt: „Vor allem Neurone mit einer weiter entwickelten Dendriten-Struktur waren aktiv, während Neurone mit einer weniger ausgereiften Struktur still blieben.

Welche funktionelle Bedeutung könnte ein solch einzigartiges Design haben, bei dem ein riesiger Teil der Zellen nicht direkt für die Informationsverarbeitung genutzt wird? Die Wissenschaftler schlugen vor, dass der Hippocampus die meisten Körnerzellen für zukünftige Umwandlungs- und Speicherprozesse reserviert.

Die neue Arbeit unterstreicht die Leistungsfähigkeit von Einzelzell-Aufnahmetechniken. „Unsere Studie liefert Informationen über das Innenleben des GPS des Gehirns und die zugrundeliegenden Einzel-Neuron-Berechnungen“, fasst Professor Peter Jonas zusammen.

Xiaomin Zhang, Alois Schlögl, Peter Jonas. 2020. Selective routing of spatial information flow from input to output in hippocampal granule cells. Neuron.
DOI: 10.1016/j.neuron.2020.07.006

Media Contact

Patrick Müller Institute of Science and Technology Austria

Weitere Informationen:

https://ist.ac.at/de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Miteinander im Wasser leben

Internationales Genom-Projekt zu aquatischen Arten in Symbiose startet Nicht nur an Land auch unter Wasser gibt es Organismen, die in Symbiose, einer sehr speziellen Partnerschaft leben, wo der eine auf…

Der Ring um das Schwarze Loch in M 87* funkelt

2019 veröffentlichte die Event Horizon Telescope Kollaboration das erste Bild eines Schwarzen Lochs und enthüllte damit M 87* – das supermassereiche Objekt im Zentrum der Galaxie Messier 87. Das EHT-Team…

Überflutungs-Risiken: Genauere Daten dank Covid-19

Momentan entwickelte GPS-Verfahren erlauben es, Höhenänderungen der Erdoberfläche regelmäßig zu messen. Eine Studie der Universität Bonn belegt nun, dass sich während der Pandemie die Qualität der Messdaten zumindest an manchen…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close