Dem Riff-Paradoxon auf der Spur

Hälterung von Steinkorallen-Fragmenten für nachfolgende Inkubationsexperimente Foto: Dr. Malik Naumann

Tropische Korallenriffe sind die artenreichsten Lebensräume auf unserem Planeten. Gleichzeitig sind sie auch sehr produktiv, obwohl sie in extrem nährstoffarmen Meeresgebieten beheimatet sind.

Dieses sogenannte Riff-Paradoxon, das schon 1842 von Charles Darwin formuliert wurde, beschäftigt bis heute die Wissenschaft. Besonders Stickstoff ist ein absolutes Mangelelement in Korallenriffen, wenngleich dieses Element sehr wichtig ist für Wachstumsprozesse, da es in den Proteinen und der DNA aller Organismen zu finden ist.

Nun ist es einer Gruppe von Meeresbiologen unter Leitung eines Wissenschaftlers der Universität Bremen gelungen, eine plausible Erklärung für das Riff-Paradoxon zu liefern: Die Umwandlung von Stickstoff – die Stickstofffixierung – durch Mikroorganismen, die mit Korallen assoziiert sind, unterstützt offensichtlich die Umwandlung von Kohlenstoff – die Kohlenstofffixierung – durch Mikroalgen im Korallengewebe.

Dies ist die Haupterkenntnis einer Bremer Studie, die am 28. Oktober 2015 in der renommierten Fachzeitschrift „Proceedings of the Royal Society“ veröffentlicht wurde.

Korallen-Holobionten

Korallen sind zwar Tiere, sogenannte Nesseltiere, aber in ihrem Gewebe leben so viele Mikroalgen und andere Mikroorganismen wie Bakterien, dass sie eigene Mikro-Ökosysteme, sogenannte Holobionten, darstellen. Mit Hilfe ihrer kleinen Mitbewohner sind Korallen-Holobionten in der Lage, einige Prozesse durchzuführen, die für Tiere völlig untypisch sind.

Besonders wichtig für die Produktivität von Korallen ist die Kohlenstofffixierung über die Photosynthese der Mikroalgen: Hier wird Kohlendioxid mit Hilfe von Lichtenergie umgewandelt in organisches Material. Durch diesen Prozess sind Korallen in der Lage, extrem hohe Wachstumsraten zu erreichen und nicht nur Lebensräume sondern auch Nahrung für andere Organismen zu schaffen. Korallen-Holobionten führen die Kohlenstofffixierung in einer außergewöhnlichen Intensität durch, und das, obwohl sie fast keinen Stickstoff zur Verfügung haben, um daraus Biomasse zu bilden.

Wie kommt das Paradoxon zustande?

Können gleichzeitig stattfindende Prozesse, vor allem Stickstofffixierung durch Bakterien und Kohlenstofffixierung durch Mikroalgen, eine Rolle gespielt haben? Genau diese unorthodoxe Fragestellung beschäftigt den Bremer Meeresökologen Professor Christian Wild seit langer Zeit.

Mit Mitteln der Deutschen Forschungsgemeinschaft (DFG) erforschte er gemeinsam mit mehreren Doktoranden – v.a. dem italienischen Nachwuchswissenschaftler Ulisse Cardini als Erstautor der Studie – und Kollegen den Zusammenhang zwischen Kohlenstoff- und Stickstofffixierung durch Korallen.

Das Team untersuchte diese Prozesse an allen dominanten Steinkorallen aus einem Korallenriff des nördlichen Roten Meers in Jordanien während mehrerer langer Expeditionen in allen Jahreszeiten des Jahres 2013. Das Besondere am Untersuchungsstandort war die hohe Saisonalität, das heißt eine starke natürliche Schwankung der Nährstoffkonzentrationen im Wasser zwischen den Jahreszeiten.

Überraschenderweise war aber die Kohlenstofffixierung aller Korallen über das gesamte Jahr sehr konstant. Das galt sogar für den Sommer, wenn die Nährstoffkonzentrationen besonders niedrig waren. Der Schlüssel für diesen Befund lag offensichtlich in der Stickstofffixierung der Mikroorganismen. Diese war, das ergab eine Vielzahl von Messungen, im Sommer ungefähr um das Zehnfache erhöht im Vergleich zu den anderen Jahreszeiten.

Die Befunde der Studie in ihrer Gesamtheit deuten darauf hin, dass durch die Stickstofffixierung der Mikroorganismen die im Sommer vorherrschende extreme Stickstoff-Limitierung überwunden wurde. Prozesse durch Bakterien unterstützen also Prozesse durch Mikroalgen im Korallengewebe, so dass letztendlich nicht nur das Tier, sondern auch das ganze Riff, davon profitiert.

Insofern betritt die Publikation von Cardini et al. in mehrfacher Hinsicht wissenschaftliches Neuland. Es wird klar, wie die einzelnen Prozesse der unterschiedlichen Korallenbewohner miteinander verzahnt sind. Und es deutet sich weiterhin an, dass die wichtige Rolle von Mikroorganismen in diesem Zusammenhang bisher unterschätzt wurde. Die Erkenntnisse des internationalen Forscherteams um den Bremer Professor Christian Wild und seinem Mitarbeiter Dr. Ulisse Cardini liefern eine neue wichtige Erklärung für das Darwinsche Riffparadoxon.

Weitere Informationen:

Universität Bremen
Fachbereich Biologie / Chemie
Marine Ökologie
Prof. Dr. Christian Wild
Tel. 0421 218 63387
E-Mail: christian.wild@uni-bremen.de

Media Contact

Eberhard Scholz idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-bremen.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer