Daumenfertigkeit auf dem Smartphone verändert unser Gehirn

In unserem Gefühlszentrum im Gehirn, dem somatosensorischen Cortex, besitzen alle Körperbereiche von der Zehe bis zum Kiefer und der Zunge festgelegte Verarbeitungsareale. Diese Areale sind flexibel und können sich verändern. Bei Geigenspielern beispielsweise ist das Areal, das den instrumentführenden Finger repräsentiert, grösser als bei anderen Menschen.

Wie sich die Fingerfertigkeit von Smartphone-Benutzern auf das Gehirn auswirkt, wollte Arko Ghosh vom Institut für Neuroinformatik der Universität und der ETH Zürich wissen. Er hatte festgestellt, dass
sich anhand unseres Smartphone-Gebrauchs die tägliche Plastizität des menschlichen Gehirns erforschen lässt. Und die digitalen Geräte liefern mit ihren Aufzeichnungen erst noch eine ergiebige Datenquelle für dieses Verhalten. «Smartphones bieten uns die Chance zu verstehen, wie das normale Leben die Gehirne von ganz normalen Menschen prägt», erklärt Arko Ghosh.

Zusammen mit Kollegen der Universität Fribourg hat er die Aktivierung im sensomotorischen Cortex untersucht, die durch Fingerbewegungen ausgelöst werden. Bei 37 Rechtshändern, davon 26 Smartphone-Benutzer mit Touchscreen und 11 Benutzer von alten Handys, wurde mittels Elektroenzephalografie (EEG) die kortikale Hirnaktivität gemessen. 62 Elektroden am Kopf der Probandinnen und Probanden zeichneten dieses Potenzial aufgrund von Bewegungen des Daumens, des Zeige- und Mittelfingers auf. Dabei stellte sich heraus, dass sich die kortikale Repräsentation bei Nutzerinnen und Nutzern von Touchscreen-Smartphones im Vergleich zu Personen mit herkömmlichen Handys unterscheidet.

Kortikale Aktivität hängt vom täglichen Gebrauch ab
Arko Ghosh konnte ausserdem zeigen, dass die Häufigkeit des Smartphone-Gebrauchs die kortikale Aktivität beeinflusst. Je mehr das Smartphone in den vergangenen zehn Tagen benutzt worden war, desto grösser war das Signal im Gehirn. Dieser Zusammenhang war am stärksten, nämlich proportional, im Areal, das den Daumen repräsentiert.

«Auf den ersten Blick scheint dieser Befund vergleichbar zu sein mit dem, was bei Geigenspielern geschieht», erklärt Ghosh. Zwei Unterscheide konnten die Forschenden jedoch festmachen: zum einen spielt bei Smartphone-Nutzern keine Rolle, wie lange sie ein Gerät schon besitzen und benutzen. Bei Geigenspielern hingegen war die Aktivität im Gehirn abhängig vom Alter, in dem sie zu spielen begannen. Zum anderen besteht ein linearer Zusammenhang zwischen der Aktivierung im Hirn und der letzten Nutzung des Smartphones, während dies bei Geigenspielern in früheren Studien nicht nachgewiesen werden konnte.

«Die digitale Technik, die wir im Alltag nutzen, formt die Sinnesverarbeitung in unserm Gehirn und zwar in einem Ausmass, das uns überrascht hat», fasst der Neurowissenschaftler Arko Ghosh zusammen.

Literatur:
Anne-Dominique Gindrat, Magali Chytiris, Myriam Balerna, Eric Rouiller, Arko Ghosh. Use-dependent cortical processing from fingertips in touchscreen phone users. Current Biology.

Kontakte:
Arko Ghosh
Institut für Neuroinformatik
Universität Zürich, ETH Zürich
Tel: +41 44 635 30 52
E-Mail: arko@ini.uzh.ch

http://www.mediadesk.uzh.ch

Media Contact

Nathalie Huber Universität Zürich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Durchleuchten im Nanobereich

Physiker der Universität Jena entwickeln einen der kleinsten Röntgendetektoren der Welt Ein Röntgendetektor kann Röntgenstrahlen, die durch einen Körper hin­durchlaufen und nicht von ihm absorbiert werden, aufnehmen und somit ein…

Wer hat das Licht gestohlen?

Selbstinduzierte ultraschnelle Demagnetisierung limitiert die Streuung von weicher Röntgenstrahlung an magnetischen Proben.   Freie-Elektronen-Röntgenlaser erzeugen extrem intensive und ultrakurze Röntgenblitze, mit deren Hilfe Proben auf der Nanometerskala mit nur einem…

Mediterrane Stadtentwicklung und die Folgen des Meeresspiegelanstiegs

Forschende der Uni Kiel entwickeln auf 100 Meter genaue Zukunftsszenarien für Städte in zehn Ländern im Mittelmeerraum. Die Ausdehnung von Städten in niedrig gelegenen Küstengebieten nimmt schneller zu als in…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close