Das Trojanische Pferd im Molekül
Chemiker sind seit jeher fasziniert von der Natur. “Die Natur ist eine herausragende Chemikerin”, erklärt Nuno Maulide, Professor für organische Chemie an der Universität Wien und österreichischer Wissenschaftler des Jahres 2018, “auch, weil sie Millionen von Jahren Zeit hatte, um eine ausgeklügelte chemische Maschinerie aufzubauen, welche bis dato in Komplexität und Effizienz unerreicht bleibt.”
Die so genannten Naturstoffe sind in dieser Hinsicht besonders faszinierend. Diese Substanzen werden für verschiedenste Anwendungen von lebenden Organismen hergestellt: unter anderem zur Verteidigung, als Sinnesmoleküle oder auch zur Kommunikation als Warn- oder Lockstoffe.
Beispielsweise kann eine Pflanze, die durch bestimmte Parasiten bedroht wird, durch jahrtausendlangen evolutionären Druck die Fähigkeit erlangen, eine Klasse bestimmter Chemikalien zu erzeugen, die den Parasiten töten oder zumindest vertreiben können.
Viele Naturstoffe besitzen sehr komplexe und ausgeklügelte chemische Strukturen und sind auf bestimmte Spezies spezifisch abgestimmt – das heißt, sie werden nur von einem sehr kleinen Spektrum von Organismen hergestellt.
Die FR-Moleküle: Naturstoffe mit außerordentlichen Eigenschaften
Im Jahre 2003 isolierte ein japanisches Chemieunternehmen drei Naturstoffe aus dem Mikroorganismus Pseudomonas fluorescens, die sogenannten FR-Moleküle (Abb 1). Auffallend war die herausragende Komplexität dieser Naturstoffe, welche immunsuppressive Eigenschaften besitzen.
Immunsuppressive Medikamente sind weiterverbreitet bei der Behandlung von Abstoßungsreaktionen von Transplantaten oder Autoimmunerkrankungen. Die Suche nach neuen Immunsuppresiva mit eindeutiger Wirkungsweise ist deswegen dringend notwendig, um immunsupressive Therapie sicherer und effizienter zu machen.
Viele Forschungsgruppen haben in den letzten Jahren versucht, die Synthese der FR-Moleküle im Labor nachzustellen – vergeblich. “Sie scheiterten alle an der Achillesferse des Moleküls: dem Makrozyklus, welcher drei aufeinanderfolgende Doppelbindungen besitzt”, erklärt Nuno Maulide, seit November 2018 auch Adjunct Principal Investigator am CeMM.
Lösung für langjähriges Problem
Maulide und seine Forschungsgruppe haben daher eine neuartige chemische Reaktion entwickelt, welche die Synthese dieser Makrozyklen in hoher Effizienz aus einfachen Startmaterialien ermöglicht. “Wir versteckten kurzerhand die komplizierten Doppelbindungen in einer 'versiegelten' Form, damit diese zu einem späteren Zeitpunkt wieder freigesetzt werden können und ihre Wirkung entfalten. So wie ein 'Trojanisches Pferd'”, scherzt Yong Chen, Erstautor der Studie.
Dazu installierten die ForscherInnen zunächst einen kleineren Ring, welcher aus nur vier Kohlenstoffen zusammengesetzt ist und die Doppelbindungen des Naturstoffs maskiert (Abb 2). Diese Herangehensweise führt zu einem sehr kurzen Syntheseweg der FR-Moleküle.
“Wir können nun mehrere Gramm des Naturstoffs herstellen; das natürliche Vorkommen liefert maximal einige Milligramm – ein großartiger Fortschritt. Außerdem sind unsere Moleküle nicht unterscheidbar von jenen Stoffen, die aus Pseudomonas fluorescens isoliert wurden”, so Maulide.
Variationen führen zu einem besseren Medikament
Da die WissenschafterInnen nun die Struktur im Labor nachbauen können, gibt es unzählige Varianten und Spielarten. So haben die ChemikerInnen bereits ein “Analog” gefunden – ein neues Molekül, welches dem Naturstoff ähnelt, allerdings kleinere Modifikationen aufweist –, das fast 100-mal potenter ist als der in der Natur vorkommende Stoff. “Die Zusammenarbeit zwischen Universität Wien und CEMM hat zu echten Synergieeffekten geführt”, erklärt Stefan Kubicek am CeMM – Forschungszentrum für molekulare Medizin der Österreichischen Akademie der Wissenschaften und Co-Autor der Studie.
“Es gibt noch so viele offenen Fragen: Was ist der genaue Wirkungsmechanismus dieser Stoffe? Können wir die biologische Aktivität noch weiter steigern? Exzellente Forschung führt immer zu mehr Fragen als Antworten”, so Maulide abschließend.
Publikation in “Journal of the American Chemical Society”
“A domino 10-step total synthesis of FR252921 and analogues, complex macrocyclic immunosuppressants”: Yong Chen, Guilhem Coussanes, Caroline Souris, Paul Aillard, Dainis Kaldre, Kathrin Runggatscher, Stefan Kubicek, Giovanni Di Mauro, Boris Maryasin, Nuno Maulide
In: Journal of the American Chemical Society
DOI: doi.org/10.1021/jacs.9b07185
Univ.-Prof. Dr. Nuno Maulide
Institut für Organische Chemie
Universität Wien
1090 – Wien, Währinger Straße 38
T +43-1-4277-521 55
M +43-664-60277-521 55
nuno.maulide@univie.ac.at
Media Contact
Weitere Informationen:
https://www.univie.ac.at/Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
»PASAWIS« – System für eine vollständige manuelle Prüfung von Bahnradsätzen
Fraunhofer IZFP auf der InnoTrans 2024: Die Materialprüfung bei Radsätzen von Schienenfahrzeugen ist integraler Bestandteil eines sicheren Schienenverkehrs. In kleineren Werkstätten wird eine solche Prüfung zumeist händisch durchgeführt. Eine Speicherung…
Ein Shaker für die Bauforschung: Geschüttelt, nicht gerührt
Mehrstöckige Holzbauten liegen im Trend. Damit ihnen starker Wind oder ein Erdbeben nichts anhaben können, müssen genügend Aussteifungen im Tragwerk vorhanden sein. Die Grundlagen hierzu liefern Computerberechnungen. Um diese in…
Drucken mit Erdmaterialien
ETH-Forschende haben ein schnelles, robotergestütztes Druckverfahren für Erdmaterialien entwickelt, das ohne Zement auskommt. Ganze Häuser können aus Lehm oder Erde gebaut werden. Das Material ist billig, fast überall verfügbar und…