Damit der Akku länger hält – Lithium-Ionen-Batterien besser verstehen

Anhand von Messwerten einer Mikroelektrode konnten die Oldenburger Chemiker die Entstehung von dünnen Filmen auf Silizium-Elektroden messen. Abbildung: Gunther Wittstock, Universität Oldenburg

Eine der größten Herausforderungen auf dem Weg zu leistungsfähigeren Lithium-Ionen-Akkus sind hauchdünne Filme, die sich während des Betriebs auf den Elektroden bilden.

Diese Beläge schützen die Elektroden und die Batterieflüssigkeit vor Zersetzung, verringern aber die Leistung der Akkus umso stärker, je dicker sie werden.

Ein Team um die Chemiker Prof. Dr. Gunther Wittstock und Eduardo dos Santos Sardinha von der Universität Oldenburg hat nun erstmals beobachtet, wie Silizium-Elektroden während des ersten Ladezyklus allmählich von einem solchen Film bedeckt werden.

Die Forscher wiesen nach, dass die Schutzschicht anders als bislang angenommen nicht auf der gesamten Oberfläche gleichzeitig entsteht, sondern fleckenhaft heranwächst. Auf der extrem glatten Oberfläche eines Plättchens aus kristallinem Silizium bildeten sich Wachstumsinseln, von denen aus der Film sich weiter ausdehnte.

In der Zeitschrift ACS Applied Energy Materials berichtet das Team, dass die Steuerung der Filmentstehung nun gezielt untersucht werden kann.

Wiederaufladbare Lithium-Ionen-Batterien liefern Energie für Hörgeräte, Handys, E-Bikes oder Elektroautos und dienen als Speicher für Wind- und Solarstrom. Schon seit längerem sind Chemiker auf der Suche nach Möglichkeiten, um die Leistung der Akkus zu vergrößern, damit E-Autos beispielsweise längere Strecken zurücklegen können. Dabei experimentieren sie mit unterschiedlichen Elektroden-Materialien, unter anderem mit Silizium.

„Silizium kann mehr Lithium speichern als Graphit, das bisher in den meisten Batterien als negative Elektrode verwendet wird“, sagt Wittstock. Dadurch erhöht sich die Energiespeicherkapazität der Batterie. Silizium besitzt aber einen entscheidenden Nachteil:

Während des Ladevorgangs schwellen die Elektroden auf mehr als das Zweieinhalbfache ihres ursprünglichen Volumens an. Dadurch entstehen Spannungen im Material und die Elektroden zerbröseln schnell. Für Batterieanwendungen werden daher Silizium-Elektroden aus Nanopartikeln getestet, die die Ausdehnung besser verkraften.

Die Volumenausdehnung stellt aber auch für die dünnen Schutzschichten auf den Elektroden ein Problem dar. Die Filme entstehen, weil in den elektrochemischen Zellen der Akkus während des Ladens und Entladens chemische Reaktionen stattfinden:

Bei starken elektrischen Spannungen zersetzt sich die elektrisch leitfähige Elektrolyt-Flüssigkeit zwischen den beiden Elektroden, die aus lithiumhaltigen Salzen und einem organischen Lösungsmittel besteht. Die Zersetzungsprodukte bilden auf der negativen Elektrode eine feste, dünne, komplex aufgebaute Schicht, die wie ein Türsteher wirkt: Sie trennt die Elektrolyt-Flüssigkeit von dem reaktiven Elektrodenmaterial, lässt aber Lithium-Ionen durch.

Dieser Film ist entscheidend für Lebensdauer und Leistung eines Akkus. Doch bislang weiß man nur wenig über die Entstehung solcher Beläge, da es schwierig ist, ihr Wachstum direkt zu beobachten. Bei Silizium-Elektroden führt die starke Volumenänderung dazu, dass die Filme schon beim ersten Ladezyklus reißen und in der Folge unter Verbrauch der Elektrolyt-Flüssigkeit immer wieder neu gebildet werden.

Wittstock, dos Santos Sardinha und zwei Kollegen von der Universität Graz gelang es nun, die Filmbildung beim allerersten Ladezyklus zu beobachten. „Wenn man eine Elektrode erst nach mehreren Ladezyklen analysiert, ist der ursprüngliche Film bereits stark verändert, weil sich die Elektrode schon mehrfach ausgedehnt und wieder zusammengezogen hat“, erläutert Wittstock.

Das Team verlangsamte den Ladevorgang durch ein spezielles Programm. Sie nutzten eine jungfräuliche Elektrode aus kristallinem Silizium und untersuchten die Filmbildung mit der elektrochemischen Rastermikroskopie (SECM). Dieses Verfahren verwendet eine Mikroelektrode, um die Silizium-Oberfläche Stück für Stück abzufahren.

Die Messwerte werden in eine Farbskala übersetzt und zu einem Bild zusammengesetzt. Diese Bilder verrieten den Forschern, wo sich bereits ein Film befand und wo nicht. „Wir haben im Prinzip Schnappschüsse der Oberfläche während der Filmbildung machen können“, sagt Wittstock. Die Ergebnisse der Studie ermöglichen es Chemikern nun, die Filmbildung auf Silizium-Elektroden systematisch zu untersuchen und anschließend zu optimieren.

Prof. Dr. Gunther Wittstock, Tel.: 0441/798-3971, E-Mail: gunther.wittstock@uol.de

Eduardo dos Santos Sardinha, Michael Sternad, Martin Wilkening und Gunther Wittstock: “Nascent SEI-Surface Films on Single Crystalline Silicon Investigated by Scanning Electrochemical Microscopy”, ACS Applied Energy Materials, DOI:10.1021/acsaem.8b01967

https://uol.de/pc2/
https://pubs.acs.org/doi/10.1021/acsaem.8b01967

Media Contact

Dr. Corinna Dahm-Brey idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Miteinander im Wasser leben

Internationales Genom-Projekt zu aquatischen Arten in Symbiose startet Nicht nur an Land auch unter Wasser gibt es Organismen, die in Symbiose, einer sehr speziellen Partnerschaft leben, wo der eine auf…

Der Ring um das Schwarze Loch in M 87* funkelt

2019 veröffentlichte die Event Horizon Telescope Kollaboration das erste Bild eines Schwarzen Lochs und enthüllte damit M 87* – das supermassereiche Objekt im Zentrum der Galaxie Messier 87. Das EHT-Team…

Überflutungs-Risiken: Genauere Daten dank Covid-19

Momentan entwickelte GPS-Verfahren erlauben es, Höhenänderungen der Erdoberfläche regelmäßig zu messen. Eine Studie der Universität Bonn belegt nun, dass sich während der Pandemie die Qualität der Messdaten zumindest an manchen…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close