ETH-Forscher entwickeln neue chemische Analysemethode / Das einzelne Molekül im Visier

Forscher der ETH Zürich haben ein Analyseverfahren entwickelt, das insbesondere für Anwendungen in der Nanotechnologie von grossem Interesse sein dürfte. Wie die Gruppe von ETH-Professor Renato Zenobi in der Fachzeitschrift „Journal of Physical Chemistry“ berichtet, gelang es ihr, einzelne Moleküle auf einer Oberfläche zu lokalisieren und chemisch genau zu bestimmen. Damit stösst die chemische Analyse in neue Dimensionen vor. Eine Identifikation auf einem Massstab von gerade mal 10 Nanometern wird durch dieses neue Verfahren möglich.

Chemischer Fingerabdruck

Um einzelne Moleküle nachzuweisen, setzte man bisher auf die Fluoroszenzmethode. Diese ermöglicht allerdings keine absolut zuverlässige Identifikation der gefundenen Substanzen. Die von den ETH-Forschern nun entwickelte Methode basiert hingegen auf der Raman-Spektroskopie, die einen regelrechten Fingerabdruck des Moleküls liefert. Dabei wird die zu untersuchende Probe mit Laserlicht bestrahlt. Der grösste Teil des Lichts wird umgehend reflektiert; ein Teil jedoch wird von den Molekülen absorbiert und anschliessend als klar definierte Ramanstrahlung wieder abgegeben. Misst man diese ausgesendete Strahlung, lässt sich erkennen, welche Substanzen sich auf der Probenoberfläche befinden.

Millionenfache Verstärkung

Das Prinzip dieser Messmethode ist an sich schon lange bekannt. Limitierend war bisher, dass Einzelmoleküle ein zu schwaches Signal aussenden. Den ETH-Forschern gelang es nun aber, mit einer speziellen Versuchsanordnung das Signal massiv zu verstärken. Bereits seit längerem weiss man, dass die Ramanstrahlung intensiver wird, wenn man die Probe auf eine Silber- oder Goldunterlage aufträgt. Einen vergleichbaren Effekt, allerdings mit einer wesentlich kleineren räumlichen Ausdehnung, erreicht man, wenn man während der Messung mit einer Silber- oder Goldspitze über die Probe fährt.

Zenobi gelang es nun, durch die Kombination der beiden Ansätze eine hochauflösende Analysemethode zu entwickeln. Die Probe wird auf eine flache Oberfläche aus Gold aufgebracht. Während der Messung fährt man mit einer Silberspitze, die ähnlich fein ist wie diejenige eines Rasterkraftmikroskops, über die Probe. Zwischen Spitze und Goldunterlage entsteht auf einer Fläche von ungefähr 10 mal 10 Nanometern ein starkes elektrisches Feld, welches das Ramansignal um einen Faktor 107 verstärkt.

Dreifache Bestätigung

Die Forscher konnten anhand von zwei verschiedenen Substanzen zeigen, dass sich mit der Methode grundsätzlich alle Verbindungen nachweisen lassen. Die Wissenschaftler sind sich auch sicher, dass sie mit dem Verfahren tatsächlich einzelne Molekülen nachweisen können. Verdünnt man beispielsweise die Probesubstanz auf der Goldoberfläche, misst man dort, wo noch Moleküle vorhanden sind, immer noch die gleich starken Signale wie vorher. Allerdings gelingt ein Nachweis – wie erwartet – an deutlich weniger Stellen. Für die Präzision des Verfahrens spricht auch, dass die gemessenen Signale über einige Sekunden hinweg betrachtet schwanken. Dies rührt nach Ansicht der Forscher von den Bewegungen der Moleküle her. Würden die gemessenen Ramansignale von einer Ansammlung von Molekülen stammen, würde man keine solche Schwankung erwarten. Ein dritter Hinweis, der zuversichtlich stimmt, ist schliesslich, dass an vereinzelten Stellen das Ramansignal plötzlich unwiderruflich verschwindet. Dies, so erklären die Forscher, geschieht dann, wenn die Moleküle durch das Laserlicht zersetzt werden.

Die Forscher sehen für ihre neue Methode zahlreiche Anwendungsmöglichkeiten. Prinzipiell ist es nun möglich, auf dünnen Materialproben mit hoher Präzision zu bestimmen, wo welche Substanzen vorkommen. Solche Messungen könnten in der Biologie, in der Umweltanalytik, aber auch bei der Herstellung von neuen Materialen hilfreiche Informationen liefern.

Weitere Informationen
ETH Zürich
Prof. Renato Zenobi
Laboratorium für Organische Chemie
Tel: +41 44 632 43 76
E-Mail: zenobi@org.chem.ethz.ch
Korrektur vom 22.01.2007
Weihua Zhang, Boon Siang Yeo, Thomas Schmid, Renato Zenobi: Single Molecule Tip-Enhanced Raman Spectroscopy with Silver Tips, Journal of Physical Chemistry (2007).

Media Contact

Anke Poiger idw

Weitere Informationen:

http://www.ethz.ch

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Die Zukunft der Robotik ist soft und taktil

TUD-Startup bringt Robotern das Fühlen bei. Die Robotik hat sich in den letzten Jahrzehnten in beispiellosem Tempo weiterentwickelt. Doch noch immer sind Roboter häufig unflexibel, schwerfällig und zu laut. Eine…

Stabilität von Perowskit-Solarzellen erreicht den nächsten Meilenstein

Perowskit-Halbleiter versprechen hocheffiziente und preisgünstige Solarzellen. Allerdings reagiert das halborganische Material sehr empfindlich auf Temperaturunterschiede, was im Außeneinsatz rasch zu Ermüdungsschäden führen kann. Gibt man jedoch eine dipolare Polymerverbindung zur…

EU-Projekt IntelliMan: Wie Roboter in Zukunft lernen

Entwicklung eines KI-gesteuerten Manipulationssystems für fortschrittliche Roboterdienste. Das Potential von intelligenten, KI-gesteuerten Robotern, die in Krankenhäusern, in der Alten- und Kinderpflege, in Fabriken, in Restaurants, in der Dienstleistungsbranche und im…

Partner & Förderer