Neue Werkstoffe nach dem Vorbild lebender Materie

Am 17. und 18. Februar 2005 kommen am Max-Bergmann-Zentrum für Biomaterialien Dresden Wissenschaftler zusammen, um im Rahmen des 2. Max-Bergmann-Symposiums über neue Trends bei der Entwicklung von Werkstoffen nach dem Vorbild lebender Materie, so genannten biomimetischen Materialien, zu sprechen. Solche Werkstoffe werden besonders dringend für Implantate und andere medizinische Produkte benötigt. Darüber hinaus werden aber auch mehr und mehr nicht-medizinische Anwendungsfelder für durch die Biologie inspirierte Materialien erschlossen, wie etwa neue Katalysatoren oder in der Halbleitertechnologie.


Dabei sein werden auch Professor Jeffrey A. Hubbell vom Schweizer Bundesinstitut für Technologie in Lausanne, einer der Pioniere auf dem Gebiet synthetischer Zellträger-Polymere, die für Therapien eine wichtige Rolle spielen, und Professor John E. Davies von der Universität Toronto in Kanada, der zu Verfahren des so genannten Tissue Engineering für die Wiederherstellung des Knochens, wichtige Beiträge geleistet hat. Die Dresdener Wissenschaftlerin Dr. Elly M. Tanaka wird über ihre zellbiologischen Forschungen zur Regeneration von geschädigtem Gewebe bei Amphibien berichten, aus denen sich Anforderungen an synthetische Werkstoffe ableiten, die für neue Therapieverfahren auf Basis von Stammzellen benötigt werden. Gleichermaßen werden Wissenschaftler aus Industrieunternehmen zu Wort kommen, um ihre Erfahrungen bei der Entwicklung von neuen Produkten auf Basis innovativer Werkstoffkonzepte vorzustellen.

Die Veranstaltung wird gemeinsam organisiert vom Leibniz-Institut für Polymerforschung Dresden e.V. und dem Institut für Werkstoffwissenschaft der Technischen Universität Dresden. Beide Einrichtungen arbeiten seit 2002 unter dem Dach des Max-Bergmann-Zentrums für Biomaterialien Dresden eng zusammen und wurden auch bereits gemeinsam als Kompetenzzentrum für Biomaterialien des Bundesforschungsministeriums für Bildung, Forschung und Technologie ausgezeichnet – ein erfolgreiches Beispiel für einrichtungsübergreifende Forschungsstrukturen, die es erlauben, neue, interdisziplinäre Aufgaben effektiv wahrzunehmen.

Der Name des Zentrums geht zurück auf den Chemiker Max Bergmann, der als Gründungsdirektor des Kaiser-Wilhelm-Instituts für Lederforschung zwischen 1920 und 1933 in Dresden Grundlagen der Strukturaufklärung von Biopolymeren und der Peptidsynthese erarbeiten konnte. Der jüdische Wissenschaftler musste Deutschland 1933 verlassen und baute daraufhin ein noch heute weltweit führendes Proteinlabor an der Rockefeller University in New York auf. – Das Kaiser-Wilhelm-Institut für Lederforschung wurde bei der Bombardierung Dresdens im Februar 1945 völlig zerstört, auf dem Gelände dieses Institutes befinden sich heute das Leibniz-Institut für Polymerforschung Dresden e.V. – und das Gebäude des Max-Bergmann-Zentrums für Biomaterialien Dresden.

Media Contact

Kerstin Wustrack idw

Weitere Informationen:

http://www.mbc-dresden.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer