Bayreuther Studie zur Proteinbiosynthese in Bakterien: Neue Perspektiven für die Antibiotika-Forschung

NusG koppelt Transkription und Translation. NusG bindet mit seiner NTD an die RNA-Polymerase und mit seiner CTD an das Ribosom. Es dient somit als flexible Verbindung zwischen den beiden Maschinen. Grafik: Philipp Zuber

In allen Lebewesen ist die Genexpression ein zweistufiger Prozess: Zunächst werden die in der DNA gespeicherten Erbinformationen als Vorlage genutzt, um auf dieser Basis Ribonukleinsäuren, sogenannte messenger-RNAs (mRNAs), zu synthetisieren.

Dadurch werden die Erbinformationen in eine für die Zelle unmittelbar verwertbare Form gebracht. Für diesen Vorgang, die Transkription, ist die RNA-Polymerase zuständig. Die messenger-RNAs wiederum enthalten die molekularen Baupläne, die vom Ribosom erkannt und für die Herstellung entsprechender Proteine, die Translation, genutzt werden.

Bei Menschen und Tieren sind diese beiden Abschnitte der Genexpression räumlich und biochemisch klar getrennt. In den Zellen von Bakterien sind sie hingegen, wie man schon seit mehr als 50 Jahren weiß, aneinander gekoppelt.

Bereits vor zehn Jahren publizierte eine Bayreuther Forschungsgruppe unter der Leitung von Prof. Dr. Paul Rösch in „Science“ erste Indizien dafür, dass die Kopplung durch das Protein NusG verursacht sein könnte.

Doch erst jetzt gelang der Forschungsgruppe von Dr. Stefan H. Knauer in Zusammenarbeit mit Partnern an der Columbia University, New York, der erste, direkte strukturelle Nachweis. NusG besteht aus zwei flexibel verbundenen Bereichen: einer aminoterminalen Domäne (NTD) und einer carboxyterminalen Domäne (CTD).

Die CTD bindet an das Ribosom, die NTD an die RNA-Polymerase. Auf diese Weise bildet NusG –eine flexible Brücke zwischen den zentralen Maschinen der Genexpression, ähnlich einer beweglichen Kupplung zwischen Eisenbahnwaggons. Diese Verbindung bewirkt, dass Transkription und Translation zeitlich aufeinander abgestimmt sind.

Experimente mit hochauflösender magnetischer Kernresonanz-Spektroskopie (NMR), die am Nordbayerischen NMR-Zentrum der Universität Bayreuth durchgeführt wurden, haben diese Zusammenhänge eindeutig sichtbar gemacht.

„Damit eröffnen sich hochinteressante Perspektiven für die Entwicklung antibiotischer Wirkstoffe. Wenn es gelingt, diesen molekularen Brückenbau zu verhindern, könnte die bakterielle Proteinsynthese und damit auch die Vermehrung von Bakterien empfindlich gestört werden – und zwar ohne dass der menschliche Organismus dadurch beeinträchtigt wird. Wir konnten in dieser Hinsicht schon erste vielversprechende Forschungsergebnisse erzielen“, sagt Dr. Stefan Knauer.

„Der Nachweis für die zentrale Rolle von NusG bei der bakteriellen Proteinbiosynthese ist uns vor allem dadurch gelungen, dass wir strukturbiologische, biochemische und molekularbiologische Verfahren miteinander kombiniert haben. Diese interdisziplinäre Herangehensweise wollen wir auch bei der Suche nach effizienten Wirkstoffen weiter verfolgen“, ergänzt Mitautor Philipp Zuber M.Sc., der an der Universität Bayreuth promoviert und hier das Elitestudienprogramm „Macromolecular Science“ im Rahmen des Elitenetzwerks Bayern absolviert hat.

Die in „iScience“ veröffentlichte Studie ist hervorgegangen aus einer engen Zusammenarbeit der Bayreuther Forscher mit den Arbeitsgruppen von Prof. Dr. Max Gottesman und Prof. Dr. Joachim Frank an der Columbia University in New York. Frank erhielt 2017 den Chemie-Nobelpreis für die Weiterentwicklung der Kryoelektronenmikroskopie, einer Forschungstechnologie, die auch bei der neuen Studie zum Einsatz kam.

Dr. Stefan Knauer
Biochemie IV – Biopolymer
Universität Bayreuth
Telefon: +49 (0)921 55-3868
E-Mail: stefan.knauer@uni-bayreuth.de

Robert S. Washburn et al.: Escherichia coli NusG links the lead ribosome with the transcription elongation complex. iScience (2020), DOI: https://dx.doi.org/10.1016/j.isci.2020.101352

Media Contact

Christian Wißler Universität Bayreuth

Weitere Informationen:

http://www.uni-bayreuth.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Graphen-Forschung: Zahlreiche Produkte, keine akuten Gefahren

«Graphene Flagship» nach zehn Jahren erfolgreich abgeschlossen. Die grösste je auf die Beine gestellte EU-Forschungsinitiative ist erfolgreich zu Ende gegangen: Ende letzten Jahres wurde das «Graphene Flagship» offiziell abgeschlossen. Daran…

Wie Bremsen im Gehirn gelockert werden können

Forschende lokalisieren gestörte Nervenbahnen mithilfe der tiefen Hirnstimulation. Funktionieren bestimmte Verbindungen im Gehirn nicht richtig, können Erkrankungen wie Parkinson, Dystonie, Zwangsstörung oder Tourette die Folge sein. Eine gezielte Stimulation von…

Wärmewende auf der GeoTHERM erleben

Als Innovationspartner in Sachen Wärmewende für Industrie und Kommunen stellt sich das Fraunhofer IEG auf der internationalen Fachmesse GeoTHERM vor. Auf seiner Ausstellungsfläche in Offenburg stellt es ab dem 29….

Partner & Förderer