Axion-Teilchen in einem Festkörperkristall gesichtet

Schema eines Weyl-Halbmetall-basierten Axion Isolators. Johannes Gooth, MPI CPfS

Das Team fand Signaturen von Axion-Teilchen, die aus Weyl-Elektronen im korrelierten topologischen Halbmetall (TaSe₄)₂I bestehen. Bei Raumtemperatur ist (TaSe₄)₂I ein eindimensionaler Kristall, der Weyl Fermion-artig Elektronen enthält, die elektrischen Strom leiten. Durch Abkühlen von (TaSe₄)₂I unter -11 °C, kondensieren diese Elektronen selbst zu einem Kristall – einer sogenannten „Ladungsdichtewelle“ – die das darunterliegende Kristallgitter der Atome verzerrt.

Die anfänglich freien Weyl-Fermionen sind nun lokalisiert und das Weyl Halbmetall (TaSe₄)₂I wird zu einem Axion-Isolator. Ähnlich wie in metallischen atomaren Kristallen freie Elektronen existieren, beherbergt der elektronische „Ladungsdichtewellen“-Kristall auf Weyl-Halbmetallbasis freie Axionen, die elektrischen Strom leiten können. Solche Axion-Teilchen verhalten sich jedoch ganz anders als die bekannteren Elektronen.

Wenn diese parallelen elektrischen und magnetischen Feldern ausgesetzt sind, erzeugen sie einen anormalen positiven Beitrag zur magnetoelektrischen Leitfähigkeit.

Basierend auf Vorhersagen von Andrei Bernevigs Gruppe an der Princeton Universität, hat die Gruppe von Claudia Felser in Dresden das Ladungsdichtewellen-Weyl-Halbmetall (TaSe4)₂I hergestellt und die elektrische Leitung in diesem Material unter dem Einfluss elektrischer und magnetischer Felder erforscht. Dabei wurde festgestellt, dass der elektrische Strom in diesem Material unter -11 °C tatsächlich von Axion-Teilchen getragen wird.

Die Ergebnisse der Experimente wurden im Nature-Magazin veröffentlicht.

„Es ist sehr überraschend, dass Materialen, die wir meinen genau zu kennen, plötzlich solch interessante Quantenteilchen aufzeigen,“ sagt Claudia Felser.

Die Untersuchung der neuartigen Eigenschaften von Axion-Teilchen in „Tischversuchen“ könnte es Wissenschaftlern nicht nur ermöglichen, das mysteriöse Reich der Quantenteilchen besser zu verstehen, sondern auch das Feld stark korrelierter topologischer Materialien zu erschließen.

„Ein weiterer Baustein zu meinem Lebenstraum, mit Tischexperimenten in Festkörpern Ideen aus der Astro- und Hochenergiephysik zu realisieren.“ sagt Johannes Gooth.

Das Max-Planck-Institut für Chemische Physik fester Stoffe (MPI CPfS) in Dresden forscht mit dem Ziel, neue Materialien mit ungewöhnlichen Eigenschaften zu entdecken und zu verstehen.

Chemiker und Physiker, Synthetiker, Experimentatoren und Theoretiker untersuchen gemeinsam, wie sich die chemische Zusammensetzung, die Anordnung der Atome sowie äußere Kräfte auf die magnetischen, elektronischen und chemischen Eigenschaften der Verbindungen auswirken. Dazu wenden sie die modernsten Instrumente und Methoden an.

Neue Quantenmaterialien, -effekte und Materialien für Energieumwandlung sind das Ergebnis dieser interdisziplinären Zusammenarbeit.

Das MPI CPfS ( www.cpfs.mpg.de ) ist Teil der Max-Planck-Gesellschaft und wurde 1995 in Dresden gegründet. Es beschäftigt rund 280 Mitarbeiterinnen und Mitarbeiter, davon etwa 180 Wissenschaftlerinnen und Wissenschaftler inklusive 70 Promovierende.

Johannes Gooth

johannes.gooth@cpfs.mpg.de

Gooth, J. et al. Axionic charge-density wave in the Weyl semimetal (TaSe4)2I. Nature https://doi.org/10.1038/s41586-019-1630-4 (2019).

https://www.nature.com/articles/s41586-019-1630-4
https://doi.org/10.1038/s41586-019-1630-4
https://www.cpfs.mpg.de/3126182/20191007_04

Media Contact

Ingrid Rothe Max-Planck-Institut für Chemische Physik fester Stoffe

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Im Roboterlabor zu nachhaltigem Treibstoff

Dank einer neuen automatisierten Forschungsinfrastruktur können Chemiker:innen an der ETH Zürich Katalysatoren schneller entwickeln. Künstliche Intelligenz hilft ihnen dabei. Als erstes Demonstrationsprojekt suchten die Forschenden nach besseren Katalysatoren zur Herstellung…

Perowskit-Solarzellen: Vakuumverfahren kann zur Marktreife führen

Weltweit arbeiten Forschung und Industrie an der Kommerzialisierung der Perowskit-Photovoltaik. In den meisten Forschungslaboren stehen lösungsmittelbasierte Herstellungsverfahren im Fokus, da diese vielseitig und einfach anzuwenden sind. Etablierte Photovoltaikfirmen setzen heute…

Von der Kunst, die reale Welt in Zahlen abzubilden

Mathematiker der Uni Ulm entwickeln „Digitale Zwillinge“. Sie schlagen eine Brücke zwischen der physischen und der digitalen Welt: sogenannte „Digitale Zwillinge“. Das sind virtuelle Modelle von Objekten, aber auch von…

Partner & Förderer