Kohlenstoff im Beton – Auf CO2 bauen

Beton ohne Emissionen: Empa-Forscher Mateusz Wyrzykowski (rechts) und Nikolajs Toropovs ersetzen herkömmliche Gesteinskörnungen durch Pellets aus Pflanzenkohle und loten damit das Potenzial von CO2-neutralem oder gar CO2-negativem Beton aus.
(c) Empa

Die Bauwirtschaft als CO2-Senke?

Daran arbeiten Forschende des «Concrete & Asphalt Labs» der Empa. Mit dem Einbringen von Pflanzenkohle in Beton loten sie das Potenzial von CO2-neutralem oder gar CO2-negativem Beton aus. Für optimale Praxistauglichkeit verarbeiten sie die Kohle vorab zu Pellets und ersetzen damit handelsübliche Gesteinskörnungen.

Um das Ziel einer klimaneutralen Schweiz bis 2050 zu erreichen, sind Strategien und Prozesse nötig, die eine negative CO2-Bilanz aufweisen. Diese sogenannten Negativemissionstechnologien (NET) bilden das Gegengewicht zu den voraussichtlich verbleibenden Emissionsausstössen im Jahr 2050 und sollen dazu beitragen, dass das Resultat der Emissionsrechnung letztlich «Netto Null» sein wird. Gerade der Baubereich ist als einer der Hauptemittenten besonders in der Pflicht. Rund acht Prozent der globalen Treibhausgasemissionen werden durch die Zement-Herstellung verursacht. Gleichzeitig keimen erste Bestrebungen, den Bausektor mit seinem massiven Ressourcenverbrauch als mögliche Kohlenstoffsenke zu nutzen.

Was paradox klingt, gelingt dann, wenn wir beginnen «mit CO2 zu bauen» – beziehungsweise den Kohlenstoff zur Herstellung von Baumaterialien zu verwenden und dadurch langfristig der Atmosphäre zu entziehen. Damit solche Visionen dereinst Realität werden, braucht es grosse wissenschaftliche Vorarbeit – so wie sie momentan im «Concrete & Asphalt Lab» der Empa geleistet wird. Ein Team rund um Abteilungsleiter Pietro Lura entwickelt ein Verfahren, wie Pflanzenkohle praxistauglich in Beton integriert werden kann.

Schwierigkeiten aufgrund der Porosität

Pflanzenkohle entsteht durch einen pyrolytischen Verkohlungsprozess unter Luftabschluss und besteht zu einem sehr grossen Teil aus reinem Kohlenstoff – jenem Kohlenstoff, den die Pflanzen beim Wachsen in Form von CO2 der Atmosphäre entnommen haben. Während bei der Verbrennung von Pflanzen das CO2 wieder entweicht, bleibt es in der Pflanzenkohle langfristig stabil. Bereits heute gibt es erste Betonprodukte mit integrierter Pflanzenkohle auf dem Markt. Dabei wird die Kohle aber häufig unbehandelt in den Beton eingebracht, was zu einigen Schwierigkeiten führen kann. «Die Pflanzenkohle ist sehr porös und absorbiert deshalb nicht nur viel Wasser, sondern auch teure Zusatzmittel, die bei der Betonherstellung verwendet werden», erklärt der Empa-Forscher Mateusz Wyrzykowski. «Ausserdem ist die Handhabung schwierig und auch nicht ganz ungefährlich. Der Kohlenstaub ist problematisch für die Atemwege und birgt eine gewisse Explosionsgefahr.»

Aus diesen Gründen schlagen die Forschenden in ihrem eben erschienenen Paper im «Journal of Cleaner Production» die Verarbeitung der Pflanzenkohle in Pellets vor. «Solche leichten Gesteinskörnungen gibt es heute bereits aus anderen Materialien wie Blähton oder Flugasche. Das Know-how im Umgang mit diesen Stoffen ist in der Branche vorhanden und damit steigen auch die Chancen, dass das Konzept in die Praxis übergeht», sagt Wyrzykowski.

Netto-Null bei 20% Anteil

Zur Fertigung der Pellets nutzte das Team einen Rotationsmischer, vermengte darin die Pflanzenkohle mit Wasser und Zement und erhielt durch die Rotation kleine Kügelchen mit einem Durchmesser zwischen 4 und 32 Millimetern. Diese Pellets wiederum nutzten sie zur Herstellung von Normalbeton der Festigkeitsklassen C20/25 bis C30/37 – jener Klassen, die heute die grösste Verbreitung im Hoch- und Tiefbau haben. «Bei einem Anteil von 20 Volumenprozent Kohlenstoffpellets im Beton erreichen wir Netto-Null-Emissionen», sagt Mateusz Wyrzykowski.

20 Volumenprozent Kohlenstoff-Pellets (schwarz) resultieren in Netto-Null-Emissionen.
20 Volumenprozent Kohlenstoff-Pellets (schwarz) resultieren in Netto-Null-Emissionen. (c) Empa

Das heisst, die gespeicherte Menge Kohlenstoff kompensiert alle Emissionen, die bei der Produktion der Pellets wie auch des Betons anfallen. Während man wohl auch beim Normalbeton (Dichte zwischen 2000 bis 2600 kg/m3) mit 20 Volumenprozent die Grenze noch nicht erreicht hat, wird das negative Emissionspotenzial bei Leichtbeton (Dichte ca. 1800 kg/m3) besonders sichtbar: Ein Anteil von 45 Volumenprozent Kohlenstoffpellets im Beton führen zu insgesamt negativen Emissionen von minus 290 kg CO2/m3. Zum Vergleich: Ein herkömmlicher Beton schlägt mit plus 200 kg CO2/m3 zu Buche.

Kohlenstoff aus der Atmosphäre

Für Abteilungsleiter Pietro Lura ist die Forschung in seinem Labor ein entscheidender Beitrag zur Erreichung der Klimaziele. Als wichtigste Kohlenstoffquelle sieht er nicht in erster Linie die Pflanzenkohle, die bei der aktuellen Forschung als Modellmaterial gedient hat. Vielmehr lenkt er den Blick auf das breit angelegte Konzept «Mining the Atmosphere», das mehrere Forschungsabteilungen an der Empa verfolgen: die Produktion von synthetischem Methangas mithilfe von Sonnenenergie, Wasser und CO2 aus der Atmosphäre in sonnenreichen Regionen der Erde und die anschliessende Pyrolyse des Gases. «Dadurch erhält man Wasserstoff, den man als Energieträger in der Industrie oder der Mobilität nutzen kann und festen Kohlenstoff, den wir – wie die Pflanzenkohle – zu Pellets verarbeiten und in den Beton einbringen können», erklärt Lura.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Pietro Lura
Concrete & Asphalt Lab
Tel. +41 58 765 4135
pietro.lura@empa.ch

Dr. Mateusz Wyrzykowski
Concrete & Asphalt Lab
Tel. +41 58 765 4541
mateusz.wyrzykowski@empa.ch

Originalpublikation:

M. Wyrzykowski, N. Toropovs, F. Winnefeld, P. Lura. Cold-bonded biochar-rich lightweight aggregates for net-zero concrete. Journal of Cleaner Production (2023). doi: 10.1016/j.jclepro.2023.140008

http://www.empa.ch

Media Contact

Stephan Kälin Kommunikation
Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Architektur Bauwesen

Die zukunftsorientierte Gestaltung unseres Wohn- und Lebensraumes erhält eine immer größer werdende Bedeutung. Die weltweite Forschung in den Bereichen Architektur und Bauingenieurwesen leistet hierzu einen wichtigen Beitrag.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Nachhaltiges Bauen, innovative Baumaterialien, Bautenschutz, Geotechnik, Gebäudetechnik, Städtebau, Denkmalschutz, Bausoftware und Künstliche Intelligenz im Bauwesen.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Graphen-Forschung: Zahlreiche Produkte, keine akuten Gefahren

«Graphene Flagship» nach zehn Jahren erfolgreich abgeschlossen. Die grösste je auf die Beine gestellte EU-Forschungsinitiative ist erfolgreich zu Ende gegangen: Ende letzten Jahres wurde das «Graphene Flagship» offiziell abgeschlossen. Daran…

Wie Bremsen im Gehirn gelockert werden können

Forschende lokalisieren gestörte Nervenbahnen mithilfe der tiefen Hirnstimulation. Funktionieren bestimmte Verbindungen im Gehirn nicht richtig, können Erkrankungen wie Parkinson, Dystonie, Zwangsstörung oder Tourette die Folge sein. Eine gezielte Stimulation von…

Wärmewende auf der GeoTHERM erleben

Als Innovationspartner in Sachen Wärmewende für Industrie und Kommunen stellt sich das Fraunhofer IEG auf der internationalen Fachmesse GeoTHERM vor. Auf seiner Ausstellungsfläche in Offenburg stellt es ab dem 29….

Partner & Förderer