Hochqualitative Spiegel für den Terahertz-Bereich

In einem geschlossenen Raum mit fiktivem Sender kann per Ray-Tracing-Simulation der Einfluss der THz-Spiegel auf die empfangbare Signalstärke an jeder Position im Raum berechnet werden. Grafik: R. Piesiewicz, Institut für Nachrichtentechnik, TU Braunschweig

Der Bandbreitebedarf von kurzreichweitigen drahtlosen Kommunikationssystemen ist in den letzten 20 Jahren stetig angestiegen. Heutige Systeme wie Bluetooth und Wireless-LAN arbeiten mit Trägerfrequenzen von wenigen Gigahertz (GHz). Das sich derzeit in der Entwicklung befindliche Ultra Wide Band-System wird Frequenzen bis zu 10,6 GHz nutzen und künftig Datenraten von 1,3 Gb/sec übertragen können. Erste stationäre Punkt-zu-Punkt-Systeme bei 60 GHz sind bereits kommerziell erhältlich.

Wenn man den steigenden Bandbreitebedarf der Vergangenheit in die Zukunft projiziert, wird klar, dass in 10 bis 15 Jahren lokale Kommunikationssysteme benötigt werden, die Datenraten von einigen 10 Gb/sec zur Verfügung stellen können. Langfristig wird man daher auf höhere Trägerfrequenzen ausweichen müssen.

WLAN-Systeme von übermorgen könnten mit Terahertz-Wellen funken – Kommunikationssysteme bei 300 GHz würden damit realisierbar. Anders als bei heutigen Systemen wäre die Übertragung gerichtet, d.h. es muss eine Sichtverbindung zwischen Sender und Empfänger bestehen. Wird diese blockiert, z.B. durch eine umherlaufende Person, könnten indirekte Ausbreitungspfade genutzt werden bei denen die Trägerwellen an einer Wand reflektiert werden. Simulationen zeigen, dass es dann sinnvoll sein könnte, Teile der Wände mit Reflektoren auszukleiden.

Erste Reflektoren für den Terahertz-Bereich wurden 2001 am Institut für Hochfrequenztechnik der TU Braunschweig demonstriert. Dabei wurde das Prinzip des dielektrischen Spiegels auf den Terahertz-Bereich übertragen. Jetzt hat die Arbeitsgruppe um Prof. Martin Koch noch einen draufgesetzt (Appl. Phys. Lett. 88, 202905 (2006)). Die jüngst präsentierten, wesentlich verbesserten Reflektoren bestehen aus mehreren Polypropylen- und Siliziumschichten und weisen um 300 GHz für senkrechten Einfall ein Reflexionsband von 140 GHz Breite auf. Die Spiegel sind sogar omnidirektional, d.h. sie reflektieren Frequenzen zwischen 319 und 375 GHz für beide Polarisationen und alle Einfallswinkel. „Wenn es gelingt, Spiegel dieser Art großflächig und preisgünstig herzustellen, könnten sie sich als Schlüsselkomponente in künftigen Kommunikationssystemen erweisen“, meint Norman Krumbholz, Doktorand am Institut für Hochfrequenztechnik.

Kontakt:

Prof. Dr. Martin Koch
Institut für Hochfrequenztechnik
TU Braunschweig
Schleinitzstr. 22
38106 Braunschweig / Germany
phone: +49(0)531/391-2000
fax: +49(0)531/391-2045
mailto: martin.koch@tu-bs.de

Media Contact

Anja Nieselt-Achilles idw

Alle Nachrichten aus der Kategorie: Informationstechnologie

Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.

Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Wolken bedecken die Nachtseite des heißen Exoplaneten WASP-43b

Ein Forschungsteam, darunter Forschende des MPIA, hat mit Hilfe des Weltraumteleskops James Webb eine Temperaturkarte des heißen Gasriesen-Exoplaneten WASP-43b erstellt. Der nahe gelegene Mutterstern beleuchtet ständig eine Hälfte des Planeten…

Neuer Regulator des Essverhaltens identifiziert

Möglicher Ansatz zur Behandlung von Übergewicht… Die rapide ansteigende Zahl von Personen mit Übergewicht oder Adipositas stellt weltweit ein gravierendes medizinisches Problem dar. Neben dem sich verändernden Lebensstil der Menschen…

Maschinelles Lernen optimiert Experimente mit dem Hochleistungslaser

Ein Team von internationalen Wissenschaftlerinnen und Wissenschaftlern des Lawrence Livermore National Laboratory (LLNL), des Fraunhofer-Instituts für Lasertechnik ILT und der Extreme Light Infrastructure (ELI) hat gemeinsam ein Experiment zur Optimierung…

Partner & Förderer