Kristall-Atome bleiben selbst beim Schmelzen träge

Physikerteam mit Jenaer Beteiligung publiziert in „Science“ Details zum Phasenübergang

Wie und warum schmilzt ein Festkörper? Was ist flüssig? Diese scheinbar simplen Fragen sind gar nicht so einfach zu beantworten und auch heute noch Gegenstand aktueller Forschung. Einer internationalen Wissenschaftlergruppe ist es jetzt gelungen, die Bewegungen der Atome beim Schmelzen direkt und quasi in Echtzeit zu beobachten und so wichtige neue Einblicke in den Ablauf des Fest-Flüssig-Phasenübergangs zu gewinnen. Die Forscher haben exemplarisch das schnelle laserinduzierte Schmelzen eines Halbleiters (hier von Indium-Antimonid) mit Hilfe der zeitaufgelösten Röntgenbeugung untersucht und dazu eine neuartige Röntgenquelle, die Sub-Picosecond Pulse Source (SPPS) am Linearbeschleuniger SLAC (Stanford, USA) verwendet.

Ihre detaillierten Forschungsergebnisse, an denen der Experimentalphysiker Prof. Dr. Klaus Sokolowski-Tinten (42) von der Universität Jena wesentlichen Anteil hat, werden am 15. April in der international renommierten Fachzeitschrift „Science“ publiziert. [„Atomic-Scale Visualization of Inertial Dynamics“, Science, Vol. 308, Heft 5720].

„Der Prozess des Laser-induzierten Fest-Flüssig-Phasenübergangs ist durch die Geschwindigkeit der Atome definiert, die sie unmittelbar vor der Laseranregung hatten“, fasst Prof. Sokolowski-Tinten das zentrale Ergebnis zusammen. Der Laserimpuls, das konnten die Forscher beobachten, befreit die Atome schlagartig von ihren Bindungen untereinander und die Atome behalten, ihrer Trägheit folgend, anfangs einfach den Bewegungszustand vor der Anregung bei. Diese Bewegung ist vollkommen ungeordnet und durch die statistische Natur der Temperaturbewegung der Atome bestimmt. „Das eine Atom weiß zunächst nicht, was das andere Atom macht und das Material befindet sich unmittelbar nach der Anregung in einem merkwürdigen Zwischenzustand: Einerseits sind die Atome noch regelmäßig angeordnet wie in einem kristallinen Festkörper, anderseits verhalten sie sich schon wie die Atome in einer Flüssigkeit“, verdeutlicht der Experimentalphysiker von der Universität Jena.

Ganz wesentlich für den Erfolg des Experimentes waren die kurzen Röntgenimpulse der SPPS, der ersten Beschleuniger-basierten Röntgenquelle, mit der es möglich ist, Röntgenimpulse von weniger als 100 Femtosekunden (1 fs = 10 hoch minus 15 s) zu erzeugen. „Das ist mindestens dreimal kürzer als das, was bisher im Röntgenbereich möglich war. Weil aber das Laser-induzierte Schmelzen so schnell ist, hätte das gleiche Experiment mit längeren Impulsen überhaupt nicht funktioniert“, betont Prof. Sokolowski-Tinten, dessen Spezialgebiet am Institut für Optik und Quantenelektronik der Universität Jena die Ultrakurzzeit-Röntgenphysik ist. „Mit unseren Ergebnissen haben wir aber nicht nur etwas Neues über das schnelle Schmelzen gelernt, sondern auch gezeigt, dass man mit solchen Beschleuniger-Röntgenquellen wirklich im Ultrakurzzeitbereich experimentieren kann“, so Sokolowski-Tinten weiter. Deshalb hat das Experiment an der SPPS einen ganz wesentlichen Pilotcharakter für die Milliarden-schweren Freie-Elektronenlaser-Projekte LCLS (ebenfalls bei SLAC in Stanford) und EURO-XFEL beim DESY in Hamburg. „SPPS gibt uns schon heute eine kleine Vorschau dessen, was in wenigen Jahren möglich sein wird“, meint Prof. Sokolowski-Tinten. Denn mit diesen „Lichtquellen der 4. Generation“ wollen Forscher in Zukunft chemische Reaktionen filmen, die atomare Struktur von (Bio)Molekülen entschlüsseln und dreidimensionale Aufnahmen aus der Nanowelt machen.

Kontakt:
Prof. Dr. Klaus Sokolowski-Tinten
Institut für Optik und Quantenelektronik der Universität Jena
Max-Wien-Platz 1, 07743 Jena
Tel.: 03641 / 947250
E-Mail: sokolowski@ioq.uni-jena.de

Media Contact

Axel Burchardt idw

Weitere Informationen:

http://www.uni-jena.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

AI – Avalanche Intelligence am SLF

Maschinell trainierte Algorithmen schätzen die aktuelle Lawinenlage ähnlich gut ein wie Menschen – mit anderen Ansätzen, Stärken und Schwächen. Vorhersage für Samstag, den 10. Februar 2024, für die Südschweiz, herausgegeben…

Wie die Pflanzenwelt den Klimakreislauf prägt

Um die Resilienz der Erde zu verstehen, modellieren Forschende der ETH Zürich Klimaveränderungen längst vergangener Zeiten. Und sie zeigen: Pflanzen sind nicht einfach Opfer der Umstände, sondern haben die Klimabedingungen…

Wie können Wälder klimafit wieder aufgeforstet werden?

Nur wenige Baumarten sind flexibel genug, um ein Jahrhundert des rasanten Klimawandels zu überstehen. Europas Wälder wurden durch den Klimawandel bereits stark in Mitleidenschaft gezogen. Durch Dürre und Borkenkäfer sind…

Partner & Förderer