Laserschweißen soll Stahlbau revolutionieren

Dr. Dirk Dittrich vom Fraunhofer IWS hat mit einem Team aus Forschung und Industrie ein leistungsfähiges Laserschweißverfahren entwickelt.
© Fraunhofer IWS/René Jungnickel

Energie- und Ressourceneffizienz werden zunehmend wichtiger. Für den konventionellen Stahlbau hat das Fraunhofer IWS daher gemeinsam mit Partnern eine Alternative entwickelt, die nicht nur eine Prozesstechnik-Lösung darstellt, sondern auch die Grundlage für Hardware- und Lasersicherheit bildet. Neben einer schonenderen Bearbeitung hochfester Werkstoffe werden deutlich verringerte Energieaufwendungen und Kosten bei gleichzeitig stark erhöhter Prozessgeschwindigkeit möglich. Verglichen mit konventionellen Fügeverfahren lässt sich der Energieeintrag ins Bauteil um bis zu 80 Prozent reduzieren. Das anschließende Richten des Bauteils entfällt sogar ganz.

In vielen technischen Bauwerken steckt ein Anwendungsbeispiel für den Stahlbau. Egal ob Containerschiffe, Schienenfahrzeuge, Brücken oder Windkrafttürme, in allen diesen Konstruktionen können mehrere 100 Meter Schweißnaht vorhanden sein. Üblicherweise kommen dafür konventionelle industrielle Verfahren wie das Metall-Aktivgas-Schweißen oder das Unterpulverschweißen zum Einsatz. Das Problem dabei: Durch die geringe Intensität des Lichtbogens fließt ein Großteil der aufgewendeten Energie nicht in den gewünschten Schweißprozess, sondern geht in Form von Wärme in das Bauteil verloren. Der Energiebedarf für die Nachbehandlung der Schweißnaht liegt vielfach in ähnlichen Größenordnungen wie derjenige für den eigentlichen Schweißprozess. »Diese energieintensiven Verfahren rufen eine erhebliche thermische Schädigung des Werkstoffs hervor und führen zu starken Verzugserscheinungen der Konstruktion – somit zu hohen Kosten durch nachträgliche Richtarbeit«, betont Dr. Dirk Dittrich, der am Fraunhofer IWS die Gruppe Laserstrahlschweißen leitet.

Leistungsfähiges Laserschweißverfahren

© Fraunhofer IWS
Der Laserstrahl wird in die Fuge zwischen den beiden zu verschweißenden Blechkanten positioniert, und gleichzeitig wird davor ein Schweißzusatzwerkstoff hinzugefügt. Es entsteht eine qualitativ hochwertige Schweißnaht.

Ein Forscherteam um Dittrich hat im Projekt »VE-MES – Energieeffizientes und verzugsarmes Laser-Mehrlagen-Engspalt-Schweißen« gemeinsam mit Industriepartnern eine energieeffiziente Alternative entwickelt. Das Laser-Mehrlagen-Engspalt-Schweißen (Laser-MES, siehe auch Kasten) bringt einen marktüblichen Hochleistungslaser zum Einsatz und besticht im Vergleich zu herkömmlichen Methoden durch verringerte Lagenanzahl und drastisch reduziertes Nahtvolumen. Daraus ergeben sich die entscheidenden Vorteile dieses Schweißverfahrens. »Wir können den Energieeintrag in das Bauteil beim Schweißen – je nach Komponente – um bis zu 80 Prozent und den Zusatzwerkstoffverbrauch um bis zu 85 Prozent im Vergleich zu herkömmlichen Lichtbogenverfahren senken«, unterstreicht Dirk Dittrich. »Zudem war am betrachteten Bauteil kein Richtprozess mehr erforderlich. Dadurch reduzieren wir Fertigungszeit und -kosten, können auch hochfeste Stahlwerkstoffe verarbeiten und verbessern die CO2-Bilanz der gesamten Fertigungskette deutlich. Das könnte bei der Vielzahl von Stahlbaukonstruktionen, die in Deutschland und in der Welt erstellt werden, einen erheblichen Vorteil darstellen.«

Denn die hohe Intensität des Laserstrahls garantiert einen sehr lokalen Energieeintrag an der Schweißstelle, wohingegen die umliegenden Bauteilbereiche vergleichsweise kalt bleiben. »Die Schweißzeit reduziert sich zudem um 50 bis 70 Prozent«, nennt Dittrich einen weiteren Vorteil. Bei der Qualität der Schweißnähte punktet das neue Verfahren ebenfalls – die Nähte sind deutlich schlanker und nahezu flankenparallel, während sie bei konventionellen Schweißprozessen V-förmig ausgeführt sind. »Den Laser in den Stahlbau einzuführen, würde für die mittelständische Industrie in Deutschland ein Alleinstellungsmerkmal darstellen und ihre Marktposition im internationalen Wettbewerb stärken«, ist sich Dittrich sicher. »Wir stellen eine effiziente Fügetechnologie für die Industrie bereit, die aufgrund ihres wirtschaftlichen Einsatzes und eines ressourcenschonenden Fertigungsablaufs den Stahlbau revolutionieren soll.«

Forschung in der Praxis: Stahlträger für den Hallenkranbau

Die Forschenden des Fraunhofer IWS demonstrierten die Leistungsfähigkeit ihrer Entwicklung anhand eines Praxisbeispiels aus dem Hallenkranbau. Sie brachten die neue Schweißtechnologie mit einer speziellen Systemtechnik und einem integrierten Strahlschutzkonzept zum Einsatz. Die Konstruktion des experimentell aufgebauten, vier Meter langen Rechteckprofils eines Hallenkran-Segments entsprach den Design- und Fertigungsrichtlinien vergleichbarer, konventionell hergestellter Bauteile. Erzeugt wurden anwendungstypische Schweißnähte: Ein Stumpfstoß an 30-Millimeter-Blechen und ein vollangeschlossener T-Stoß (15-Millimeter-Blech). Für einen Meter Schweißnaht ließen sich die Kosten für eine Blechdicke von 30 Millimetern gegenüber dem Unterpulverschweißen inklusive des nachträglichen Richtprozesses um 50 Prozent senken.

Für Blechdicken unter 20 Millimetern, bei der herkömmlicherweise auch Metall-Aktiv-Gas-Schweißverfahren eingesetzt werden, liegt die potenzielle Kostenersparnis mit bis zu 80 Prozent noch höher. Allein die Kostenersparnisse bezüglich der Schweißzusatzwerkstoffe kann in größeren Unternehmen bei mehr als 100 000 Euro pro Jahr liegen. Zusätzlich bieten die eingesetzten Laserstrahlquellen aufgrund ihres hohen Wirkungsgrades (ungefähr 50 Prozent) und der guten Prozesseffizienz (Reduktion des Energieeintrages um 80 Prozent) großes Potenzial, die steigenden Energiekosten einzudämmen. Mit diesem Nachweis der Praxistauglichkeit lässt sich der Lösungsansatz nun auch auf andere Anwendungen übertragen.

Laserschweissen soll Stahlbau revolutionieren (fraunhofer.de)

Media Contact

Markus Forytta PR und Kommunikation
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Messenachrichten

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Forschende enthüllen neue Funktion von Onkoproteinen

Forschende der Uni Würzburg haben herausgefunden: Das Onkoprotein MYCN lässt Krebszellen nicht nur stärker wachsen, sondern macht sie auch resistenter gegen Medikamente. Für die Entwicklung neuer Therapien ist das ein…

Mit Kleinsatelliten den Asteroiden Apophis erforschen

In fünf Jahren fliegt ein größerer Asteroid sehr nah an der Erde vorbei – eine einmalige Chance, ihn zu erforschen. An der Uni Würzburg werden Konzepte für eine nationale Kleinsatellitenmission…

Zellskelett-Gene regulieren Vernetzung im Säugerhirn

Marburger Forschungsteam beleuchtet, wie Nervenzellen Netzwerke bilden. Ein Molekülpaar zu trennen, hat Auswirkungen auf das Networking im Hirn: So lässt sich zusammenfassen, was eine Marburger Forschungsgruppe jetzt über die Vernetzung…

Partner & Förderer