Mechanische Reize beeinflussen das Organwachstum

The organoids grown by the research team form branched glandular ducts whose structure and organization very closely resemble that of the human mammary gland.
(c) Benedikt Buchmann / TUM

– komplexe Interaktionen von Zellen und Gewebe.

Beim natürlichen Wachstum, aber auch bei der Tumorentstehung spielen in menschlichen Organen wie Niere, Lunge oder Brustdrüse neben chemischen auch mechanische Einflüsse eine wichtige Rolle. An Organoiden, im Labor gezüchten, dreidimensionalen Modellsystemen solcher Organe, konnte ein Forschungsteam der Technischen Universität München (TUM) dies nun im Detail zeigen.

Organoide sind dreidimensionale Modellsysteme für unterschiedliche Organe des Menschen, die im Labor gezüchtet werden und ähnliche Eigenschaften wie das echte Körpergewebe aufweisen. Sie bieten der Wissenschaft neue Möglichkeiten, um Wachstumsprozesse von Organen im Labor nachzubilden und zu untersuchen. Mit den bisher verwendeten vereinfachten zweidimensionalen Modellsystemen waren diese Prozesse bisher nicht beobachtbar.

Indem sie an Brustdrüsenorganoiden die komplexen Interaktionen der Zellen mit dem umgebenden Gewebe analysierten, konnten Wissenschaftlerinnen und Wissenschaftler der TU München, des Helmholtz Zentrums München und der Ruhr-Universität Bochum zeigen, dass das Wachstum des Drüsengewebes in der menschlichen Brust explizit von den mechanischen Eigenschaften des umgebenden Kollagennetzwerks beeinflusst wird.

Integrierter dynamischer Entwicklungsprozess

Die vom Team gezüchteten Organoide bilden verzweigte Drüsengänge aus, welche in ihrer Struktur und Organisation der menschlichen Brustdrüse sehr nahekommen. Während des Wachstums dringen die einzelnen Organoidzweige in die umgebende Kollagenmatrix ein.

„Ausgehend von einer einzigen Stammzelle bauen diese Organoide in nur 14 Tagen eine komplexe, verzweigte, dreidimensionale Struktur auf, die aus mehreren tausend Zellen besteht. Das ist absolut faszinierend“, sagt Andreas Bausch, Professor für Zellbiophysik an der TU München und Leiter der Forschungsgruppe.

Durch zeitlich aufgelöste Mikroskopie der wachsenden Strukturen über mehrere Tage gelang es dem Forschungsteam, den dynamischen Prozess der Entwicklung im Detail nachzuverfolgen. Dabei fanden sie heraus, dass das Organoidwachstum maßgeblich durch eine kollektive Bewegung der Zellen diktiert wird.

Indem sie sich in Wachstumsrichtung ausdehnen und wieder zusammenziehen, erzeugen die Zellen dabei Kräfte die so stark sind, dass sie die umgebende Kollagenmatrix deformieren und dem Organoid ermöglichen, sein weiteres Wachstum selbstorganisiert auszurichten.

Stabiler Kollagenkäfig

„Möglich ist dies durch die mechanische Plastizität des Kollagens“, sagt Benedikt Buchmann, Erstautor der Studie. „Wenn die einzelnen Zellen sich kollektiv hin und her bewegen, baut sich eine so starke Spannung auf, dass die Zellen eines Zweigs die Kollagenmatrix verformen können.“

Der gesamte Prozess führt zur Bildung eines mechanisch stabilen Kollagenkäfigs, der schließlich den wachsenden Zweig umgibt. Der Kollagenkäfig steuert die weitere Spannungserzeugung, das Heranwachsen der Äste und die plastische Verformung der Matrix.

Aufbauend auf diesen Erkenntnissen ist es nun möglich, mit diesem Modellsystem auch komplexere Prozesse, wie zum Beispiel erste Schritte der Metastasierung oder Wechselwirkungen mit anderen Zelltypen zu untersuchen. Ob dieser Selbstorganisations-Mechanismus auch in anderen Organen vorkommt, wird gerade aktuell intensiv erforscht.

Gefördert wurde die Forschungsarbeit durch das European Research Council (ERC) im Rahmen des ERC Synergy Grant „PoInt“ und durch den SFB 1032 der Deutschen Forschungsgemeinschaft (DFG). Partner des Projekts waren das Helmholtz Zentrum München und das St. Josef-Hospital der Ruhr-Universität Bochum.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Andreas Bausch
Lehrstuhl für Biophysik (E27) und
TUM Center for Protein Assemblies (CPA)
Technische Universität München
Ernst-Otto-Fischer-Straße 8, 85748 Garching
Tel.: +49 89 289 12480 – E-Mail: andreas.bausch@tum.de

Originalpublikation:

Benedikt Buchmann, Lisa K. Engelbrecht, Pablo Fernandez, Franz P. Hutterer, Marion K. Raich, Christina H. Scheel, Andreas R. Bausch
Mechanical plasticity of collagen directs branch elongation in human mammary gland organoids
Nature Communications, May 12, 2021 – DOI: 10.1038/s41467-021-22988-2

Weitere Informationen:

https://www.nature.com/articles/s41467-021-22988-2 Originalpublikation
https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/36795/ Presseinformation auf der TUM-Website
https://www.bauschlab.org Website der Arbeitsgruppe

Media Contact

Dr. Andreas Battenberg Corporate Communications Center
Technische Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Wolken bedecken die Nachtseite des heißen Exoplaneten WASP-43b

Ein Forschungsteam, darunter Forschende des MPIA, hat mit Hilfe des Weltraumteleskops James Webb eine Temperaturkarte des heißen Gasriesen-Exoplaneten WASP-43b erstellt. Der nahe gelegene Mutterstern beleuchtet ständig eine Hälfte des Planeten…

Neuer Regulator des Essverhaltens identifiziert

Möglicher Ansatz zur Behandlung von Übergewicht… Die rapide ansteigende Zahl von Personen mit Übergewicht oder Adipositas stellt weltweit ein gravierendes medizinisches Problem dar. Neben dem sich verändernden Lebensstil der Menschen…

Maschinelles Lernen optimiert Experimente mit dem Hochleistungslaser

Ein Team von internationalen Wissenschaftlerinnen und Wissenschaftlern des Lawrence Livermore National Laboratory (LLNL), des Fraunhofer-Instituts für Lasertechnik ILT und der Extreme Light Infrastructure (ELI) hat gemeinsam ein Experiment zur Optimierung…

Partner & Förderer