Elektronenbewegungen in Flüssigkeit mit Superzeitlupe gemessen

The scientists inject water from above into the analysis chamber, where it forms a short microjet that meets a laser beam. (Photograph: ETH Zurich / Inga Jordan)

In Molekülen können sich Elektronen bewegen, zum Beispiel wenn sie von aussen angeregt werden oder im Verlauf einer chemischen Reaktion. Erstmals ist es nun Wissenschaftlern gelungen, die ersten paar Dutzend Attosekunden dieser Elektronenbewegung in einer Flüssigkeit zu untersuchen.

Um zu verstehen, wie chemische Reaktionen beginnen, untersuchen Chemiker seit Jahren mit Superzeitlupenexperimenten die allerersten Momente einer Reaktion. Mittlerweile sind Messungen mit einer Auflösung von wenigen Dutzend Attosekunden möglich. Eine Attosekunde ist der 10^18-te Teil einer Sekunde, also ein Millionstel eines Millionstel einer Millionstelsekunde.

«In diesen ersten paar Dutzend Attosekunden einer Reaktion kann man bereits beobachten, wie sich Elektronen innerhalb von Molekülen verschieben», erklärt Hans Jakob Wörner, Professor am Laboratorium für physikalische Chemie der ETH Zürich. «Später, im Verlauf von rund 10’000 Attosekunden oder 10 Femtosekunden kommt es dann bei chemischen Reaktionen zu Bewegungen der Atome bis hin zum Bruch von chemischen Bindungen.»

Der ETH-Professor gehörte vor fünf Jahren zu den ersten Wissenschaftlern, die in Molekülen Elektronenbewegungen auf der Attosekunden-Skala nachweisen konnten. Allerdings konnten solche Messungen bisher nur bei Molekülen in Gasform durchgeführt werden, weil sie in einer Hochvakuum-Kammer stattfinden.

Transport aus der Flüssigkeit verzögert

Mit dem Bau einer neuen Messapparatur ist es Wörner und seinen Mitarbeitenden nun gelungen, solche Bewegungen in Flüssigkeit nachzuweisen. Die Forschenden nutzten dazu die Photoemission von Wasser, bei der sie mit Licht Wassermoleküle bestrahlen, wodurch Elektronen aus ihnen herausgeschleudert werden. Diese Elektronen können die Wissenschaftler messen. «Wir haben für unsere Untersuchung diesen Vorgang gewählt, weil es mit Laserpulsen möglich ist, ihn zeitlich höchst präzise zu starten», erklärt Wörner.

Auch die neuen Messungen fanden im Hochvakuum statt. Wörner und sein Team nutzten dafür einen 25 Mikrometer dünnen Flüssigkeitsstrahl, den sie in die Messkammer einspritzten. Die Wissenschaftler konnten damit messen, dass Elektronen aus Wassermolekülen in Flüssigkeit 50-70 Attosekunden später herausbefördert werden als aus Wassermolekülen in Dampfform. Der Zeitunterschied ist darauf zurückzuführen, dass die Moleküle in Flüssigkeit von anderen Wassermolekülen umgeben sind, was auf das einzelne Molekül einen messbaren Verzögerungseffekt hat.

Wichtiger Schritt

«Elektronenbewegungen sind die Schlüsselereignisse in chemischen Reaktionen. Daher ist es so wichtig, sie auf einer hochaufgelösten Zeitskala zu messen», sagt Wörner. «Der Schritt von Messungen in Gasen zu Messungen in Flüssigkeit ist von besonderer Bedeutung, weil die meisten chemischen Reaktionen und insbesondere die biochemisch interessanten Prozesse in Flüssigkeiten stattfinden.»

Unter letzteren gibt es zahlreiche Prozesse, die wie die Photoemission von Wasser ebenfalls durch Lichtstrahlung ausgelöst werden. Die Photosynthese von Pflanzen zählt dazu sowie die biochemischen Vorgänge auf unserer Netzhaut, welche uns das Sehen ermöglichen, und durch Röntgen-Strahlung oder andere ionisierende Strahlung verursachte Schäden an der DNA. Mit der Hilfe von Attosekundenmessungen dürften Wissenschaftler in den nächsten Jahren neue Einblicke in diese Reaktionen gewinnen.

Originalpublikation:

Jordan I, Huppert M, Rattenbacher D, Peper M, Jelovina D, Perry C, von Conta A, Schild A, Wörner HJ: Attosecond spectroscopy of liquid water. Science 2020, 369: 974, doi: 10.1126/science.abb0979 [http://dx.doi.org/10.1126/science.abb0979]

Weitere Informationen:

https://ethz.ch/de/news-und-veranstaltungen/eth-news/news/2020/08/elektronenbewe…

Media Contact

Hochschulkommunikation
Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Atomkern mit Laserlicht angeregt

Dieser lange erhoffte Durchbruch ermöglicht neuartige Atomuhren und öffnet die Tür zur Beantwortung fundamentaler Fragen der Physik. Forschenden ist ein herausragender Quantensprung gelungen – sprichwörtlich und ganz real: Nach jahrzehntelanger…

Wie das Immunsystem von harmlosen Partikeln lernt

Unsere Lunge ist täglich den unterschiedlichsten Partikeln ausgesetzt – ungefährlichen genauso wie krankmachenden. Mit jedem Erreger passt das Immunsystem seine Antwort an. Selbst harmlose Partikel tragen dazu bei, die Immunantwort…

Forschende nutzen ChatGPT für Choreographien mit Flugrobotern

Robotik und ChatGPT miteinander verbinden… Prof. Angela Schoellig von der Technischen Universität München (TUM) hat gezeigt, dass Large Language Models in der Robotik sicher eingesetzt werden können. ChatGPT entwickelt Choreographien…

Partner & Förderer