Von Schwefel zu Kohlenstoff

Enantiomere Stränge von DNS. Copyright: Cambridge University/https://bluesci.wordpress.com/2012/10/03/feature-through-the-looking-glass/

Eine Vielzahl der Moleküle, die für das Leben essentiell sind, sind chiral: beispielsweise Kohlenhydrate, RNS und DNS und auch Aminosäuren. Das bedeutet, dass für diese Moleküle eine „linksdrehende“ (äquivalent zur linken Hand) und eine „rechtsdrehende“ (äquivalent zur rechten Hand) Form existieren können. Diese beiden Formen nennt man „Enantiomere“.

In unseren Körpern (und denen anderer Organismen) ist nur eine Enantiomerenform präsent – und dieser Umstand hat großen Einfluss auf jene chemischen Reaktionen, die in uns ablaufen und das Leben bedingen.

ChemikerInnen sehen in chiralen Pharmazeutika ein immer größer werdendes Potenzial in der Arzneimittelforschung. Die Synthese solcher Moleküle in enantiomerenreiner Form ist bis heute eine große Herausforderung in der organischen Synthese. Die Gruppe von Nuno Maulide am Institut für Organische Chemie hat sich – zusammen mit KollegInnen des Instituts für Theoretische Chemie – mit dem Transfer von Chiralität zwischen verschiedenen Atomen und Molekülen befasst und dabei bahnbrechende Ergebnisse erzielt.

Wie sind chirale Moleküle aufgebaut?

„Grundsätzlich enthalten organische Moleküle mehrere Kohlenstoffatome. Wir wissen, dass Kohlenstoff vier chemische Bindungen zu anderen Elementen ausbildet – so werden beispielsweise lange Ketten und komplexe Moleküle gebildet“, erklärt Nuno Maulide, Professor für Organische Synthese an der Universität Wien. „Sollten alle vier Substituenten an einem Kohlenstoffatom unterschiedlich sein, so stellt dieser Kohlenstoff ein chirales Zentrum dar. Und somit ist das entsprechende Molekül, in dem dieser Kohlenstoff eingebaut ist, ebenso chiral“, so der portugiesische Chemiker.

Andere Elemente können ebenso chiral sein – und ihre Chiralität auf Kohlenstoff übertragen

Kohlenstoff ist aber nicht das einzige Element des Periodensystems, das chiral sein kann. Schwefel, ein oftmals vernachlässigtes Element, kann ebenso vier unterschiedliche Substituenten haben. „Chiraler Schwefel wird oft übersehen, wenn ChemikerInnen von chiralen Elementen reden“, sagt Dainis Kaldre, Postdoc in der Maulide-Gruppe und Erstautor der Studie. „Wir fragten uns also: Kann die chirale Information des Schwefels auf Kohlenstoffe übertragen werden?“, ergänzt Daniel Kaiser, Coautor der Arbeit. Dem Team ist es nun mit der neuentwickelten Methode gelungen, mehrere chirale Moleküle mit potenziell bioaktiven Eigenschaften zu synthetisieren.

„Man speichert chirale Information am Schwefel – diese kann leicht generiert werden – und verwendet eine, von uns neu entwickelte, chemische Reaktion um sie abzurufen und auf ein Kohlenstoffatom zu übertragen, wo sie besonders wertvoll ist. Um ehrlich zu sein waren wir überrascht, wie leicht das funktioniert“, sagt Maulide. Um mechanistische Details besser zu verstehen, wandte sich das Team an die Gruppe von Leticia González am Institut für Theoretische Chemie, mit der eine langjährige Kooperation besteht. „Uns war es möglich ein Modell zu entwerfen, das die Resultate sehr schön beschreibt“, betont Gonzalez. „Und das Beste ist, dass einige unserer Voraussagen das Potenzial haben zu neuen Reaktionen zu führen – wir werden also noch eine Weile beschäftigt sein“, so Maulide abschließend.

Publikation in „Angewandte Chemie“
„Asymmetrische Redoxarylierung: Chiralitätstransfer von Schwefel zu Kohlenstoff durch sigmatrope Sulfonium [3,3]-Umlagerung“
Dainis Kaldre, Boris Maryasin, Daniel Kaiser, Leticia González und Nuno Maulide,
in: Angewandte Chemie, 2017.
DOI: 10.1022/acie.201610105
http://onlinelibrary.wiley.com/doi/10.1002/ange.201610105/full

Wissenschaftlicher Kontakt
Univ.-Prof. Dr. Nuno Maulide
Institut für Organische Chemie
Universität Wien
1090 Wien, Währinger Straße 38
T +43-1-4277-521 55
M +43-664-602 77-521 55
nuno.maulide@univie.ac.at

Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Offen für Neues. Seit 1365.
Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 19 Fakultäten und Zentren arbeiten rund 9.600 MitarbeiterInnen, davon 6.800 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 94.000 nationale und internationale Studierende inskribiert. Mit über 175 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. http://www.univie.ac.at

Media Contact

Stephan Brodicky Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Experiment öffnet Tür für Millionen von Qubits auf einem Chip

Forschenden der Universität Basel und des NCCR SPIN ist es erstmals gelungen, eine kontrollierbare Wechselwirkung zwischen zwei Lochspin-Qubits in einem herkömmlichen Silizium-Transistor zu realisieren. Diese Entwicklung eröffnet die Möglichkeit, Millionen…

Stofftrennung trifft auf Energiewende

Trennkolonnen dienen der Separation von unterschiedlichsten Stoffgemischen in der chemischen Industrie. Die steigende Nutzung erneuerbarer Energiequellen bringt nun jedoch neue Anforderungen für einen flexibleren Betrieb mit sich. Im Projekt ColTray…

Kreuzfahrtschiff als Datensammler

Helmholtz-Innovationsplattform und HX Hurtigruten Expeditions erproben neue Wege in der Ozeanbeobachtung. Wissenschaftliche Forschung nicht nur von speziellen Forschungsschiffen aus zu betreiben, sondern auch von nicht-wissenschaftlichen Schiffen und marinen Infrastrukturen –…

Partner & Förderer