Einem altbekannten Material ein modernes Rätsel entlockt

Wissenschaftler vermuten, dass dies chemische Reaktionen besonders gut beschleunigt. Wie diese Eigenschaft zustande kommt, war bisher jedoch nicht bekannt. Wissenschaftler der Technischen Universität Wien und der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben nun nachgewiesen, dass das Geheimnis in der besonderen Struktur der Eisenoxid-Oberfläche liegt. Ihre Ergebnisse haben sie jetzt in dem renommierten Wissenschaftsmagazin Science veröffentlicht.*

Eisen(II,III)oxid – besser bekannt als Magnetit – ist wegen seiner magnetischen Eigenschaften bereits seit Jahrtausenden für den Menschen interessant; so konnten schon in der Antike Magnetkompasse zur Orientierung gebaut werden. Heute interessieren Wissenschaftler jedoch nicht mehr so sehr die magnetischen Eigenschaften des Materials, sondern das, was sich an der Oberfläche eines Eisenoxid-Kristalls abspielt. Denn diese Vorgänge sind für die guten katalytischen Eigenschaften des Eisenoxids verantwortlich.

Zusammen mit Forschern der TU Wien haben Wissenschaftler am Lehrstuhl für Festkörperphysik der FAU daher die Struktur der Oberfläche untersucht. Im Inneren eines Kristalls ist es vergleichsweise leicht, die Struktur zu beschreiben – jedes Eisen- bzw. Sauerstoffatom hat einen bestimmten Platz, der sich periodisch wiederholt. „Uns hat dagegen interessiert, wie sich die Atome in den äußersten Lagen des Kristalls anordnen, wo diese Symmetrie gebrochen ist“, erläutert Prof. Alexander Schneider.

Die Wissenschaftler beobachteten, dass im Oberflächenbereich weniger Eisenatome vorhanden sind und diese sich auch in anderer Weise als im Innern des Kristalls im praktisch unveränderten Sauerstoffgitter anordnen. Dadurch entstehen besondere Bindungsplätze für sich von außen anlagernde Atome und Moleküle. Dies widerlegt die bisherige Annahme, dass die Chemie von Metalloxidoberflächen grundsätzlich durch das Fehlen von Sauerstoffatomen bestimmt wird. Die Ergebnisse lassen erwarten, dass der Mechanismus der Fehlstellenbildung und Umordnung der Metallatome im intakten Sauerstoffgitter auch an den Oberflächen vieler anderer Metalloxide wirksam ist.

Erlanger Spezialgebiet

Die Struktur eines so komplexen Materials aufzuklären, ist trotz modernster experimenteller und theoretischer Methoden ein schwieriges Unterfangen. Dies gelang der Forschergruppe in Erlangen mit Hilfe der Beugung niederenergetischer Elektronen (LEED: Low-Energy Electron Diffraction). Bei dieser Methode werden Elektronen auf den Kristall geschossen und an dessen Oberfläche in wohldefinierte Richtungen abgelenkt.

Aus den Intensitäten dieser gebeugten Elektronenstrahlen können die Wissenschaftler auf der Basis aufwändiger Modellrechnungen dessen Oberflächenstruktur feststellen. Mit dieser Methode hat sich die Arbeitsgruppe des inzwischen emeritierten Prof. Klaus Heinz am Lehrstuhl für Festkörperphysik der FAU eine weltweite Führungsposition bei der Aufklärung der atomaren Struktur von Kristalloberflächen erarbeitet.

„Die in dieser Studie erzielte Übereinstimmung aus Experiment und Vergleichsrechnung ist so gut, dass wir nun nicht nur genauestens über die Eisenoxidoberfläche Bescheid wissen, sondern auch zeigen können, dass die Methode der Elektronenbeugung mit der Beschreibung dieser Materialklasse – entgegen einer in der Fachwelt häufig vertretenen Meinung – bestens zurecht kommt“, freut sich Dr. Lutz Hammer.

*R. Bliem, et al. , Science, 5. Dezember 2014, Vol. 346, #621 4; doi: 10.1126/science.1260556

Weitere Informationen für die Medien:
Dr. Lutz Hammer
Tel.: 09131/85-28404
lutz.hammer@physik.uni-erlangen.de

Prof. Dr. Alexander Schneider
Tel.: 09131/85-28405
alexander.schneider@physik.uni-erlangen.de

Media Contact

Blandina Mangelkramer idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.fau.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Das Mikrobiom verändert sich dynamisch und begünstigt wichtige Funktionen für den Wirt

Ein interdisziplinäres Forschungsteam des Kieler SFB 1182 untersucht am Beispiel von Fadenwürmern, welche Prozesse die Zusammensetzung des Mikrobioms in Wirtslebewesen steuern. Alle vielzelligen Lebewesen – von den einfachsten tierischen und…

Wasser im Boden – genaue Daten für Landwirtschaft und Klimaforschung

Die PTB präsentiert auf der Woche der Umwelt, wie sich die Bodenfeuchte mithilfe von Neutronenstrahlung messen lässt. Die Bodenfeuchte hat nicht nur Auswirkungen auf die Landwirtschaft, sondern ist als Teil…

Bioreaktor- und Kryotechnologien für bessere Wirkstofftests mit humanen Zellkulturen

Medizinische Wirkstoffforschung… Viele Neuentwicklungen von medizinischen Wirkstoffen scheitern, weil trotz erfolgreicher Labortests mit Zellkulturen starke Nebenwirkungen bei Probanden auftreten. Dies kann passieren, wenn zum Beispiel die verwendeten Zellen aus tierischem…

Partner & Förderer